
 

QWMN Good Modelling Practice Principles  1 
 
 

Queensland Water Modelling Network 

 
 

QWMN 

Good 

Modelling 

Practice 

Principles 
 

April 2018 



 

QWMN Good Modelling Practice Principles i 
 
 

 

 

QWMN 

Good Modelling Practice 

Principles 

 

 

April 2018



 

QWMN Good Modelling Practice Principles 2 
 
 

 

 

 

 

 

 

Prepared by A J Jakeman, S El Sawah, S Cuddy, B Robson, N McIntyre and F Cook 

© The State of Queensland (Department of Environment and Science) 2018  

The Queensland Government supports and encourages the dissemination and exchange of its information. The 

copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence 

   

Under this licence you are free, without having to seek permission from the Department of Environment and 
Science, to use this publication in accordance with the licence terms.  
  
You must keep intact the copyright notice and attribute the State of Queensland, Department of Environment and 
Science as the source of the publication. 
  
For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en 

 

 

Disclaimer 

This document has been prepared with all due diligence and care, based on the best available information at the 

time of publication. The department holds no responsibility for any errors or omissions within this document. Any 

decisions made by other parties based on this document are solely the responsibility of those parties. Information 

contained in this document is from a number of sources and, as such, does not necessarily represent 

government or departmental policy. 

If you need to access this document in a language other than English, please call the Translating and Interpreting 

Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725 

 

 

  

http://creativecommons.org/licenses/by/3.0/au/deed.en
http://creativecommons.org/licenses/by/3.0/au/


 

QWMN Good Modelling Practice Principles  3 
 
 

Executive summary 
Best practice modelling reduces model uncertainties and quantitatively and qualitatively 

documents any uncertainties and assumptions for user transparency. Conversely, poor 

modelling practices contribute to uncertainties and increase user distrust in the value of 

modelling. 

This paper synthesises existing knowledge and experience on good water modelling 

practices and principles. Specifically, it provides guidance for new and existing water model 

development efforts, and informs end users and decision makers about what distinguishes 

good modelling practices from poor ones. The paper covers the following: 

1. An introduction to water models and their role in decision making; 

2. An overview of water modelling practices, and the role of best practice modelling 

in improving model quality and results; 

3. A characterisation of best practice modelling in relation to each of the phases and 

steps in the modelling process, including checklists of things that modelling 

practice should explicitly address. 

This paper’s scope covers the use of water resource models to investigate impacts on the 

environmental system in question, such as a paddock, catchment, or estuary.  It includes 

model use under both status quo conditions and in response to management actions, 

climate variations or other uncontrollable forces. It also includes model uses to adaptively 

manage a system, such as through additional monitoring and informative studies. 

The following best practice water modelling recommendations warrant specific attention by 

water model developers and users: 

 Specify the objectives, clients and stakeholders for the modelling exercise clearly. 

 Document the nature of the data used to build and test the model. 

 Justify the selection of model type and calibration method. 

 Undertake extensive model testing and report on results, model limitations and 

assumptions. 

 List and characterise information and data sources and try to rank the criticality of 

uncertainties arising in the entire modelling process by means including expert 

elicitation, stakeholder engagement, sensitivity and other more quantitative 

uncertainty analyses. 

 Carefully consider appropriate model complexity, taking into account uncertainty, 

data support and system behaviours. This is likely to include effective simplification 

with good documentation of the assumptions made and their implications. 

 Inform the users of model results about the dangers of being provided only a single 

number upon which to base decisions. Also address their needs by providing 

uncertainty information in a format that fits within their workflows. 

 Factor in the appropriate costs of a holistic uncertainty assessment in project 

budgeting. It will be worth it in the long-term. 

 Place due emphasis on communicating uncertainty. Visualisation of indicators of 

concern is one aspect that can be used. The design of such visualisations should pay 

special attention to possible interpretation biases and techniques to manage them. 

 Pay explicit attention to the way model results and uncertainty are communicated in 

written reports and publications. 
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 Ensure model visualisations employ user-centred designs early in the modelling 

process, and leverage different visualisation tools to engage different audiences (e.g. 

researchers, policy makers, stakeholders). 

 Embrace the use of automated methodologies that can both support transparent 

experimental workflows and allow for systematic understanding of the impacts of the 

various relationships and factors that influence the model’s results. 

 Pay careful attention to the collected data, including ensuring that they measure the 

appropriate variables, at the correct locations and with the required frequency. 

 All modelling practices should address the checklists of questions specified in this 

paper for each phase of the modelling process. 

 Help instil good modelling practice within the community by adopting these 

recommendations and sharing and collaborating on best practice cases in the major 

water modelling domains. 
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1 Introduction 
Best practice modelling reduces model uncertainties and quantitatively and qualitatively 

documents any uncertainties and assumptions for user transparency. Conversely, poor 

modelling practices contribute to uncertainties and increase user distrust in the value of 

modelling. 

This paper synthesises existing knowledge and experience on good water modelling 

practices and principles. Specifically, it provides guidance for new and existing water model 

development efforts, and informs end users and decision makers about what distinguishes 

good modelling practices from poor ones. The paper covers the following: 

1. An introduction to water models and their role in decision making; 

2. An overview of water modelling practices, and the role of best practice modelling 

in improving model quality and results; 

3. A characterisation of best practice modelling in relation to each of the phases and 

steps in the modelling process, including checklists of things that modelling 

practice should explicitly address. 

This paper’s scope covers the use of water resource models to investigate impacts on the 

environmental system in question, such as a paddock, catchment, or estuary.  It includes 

model use under both status quo conditions and in response to management actions, 

climate variations or other uncontrollable forces. It also includes model uses to adaptively 

manage a system, such as through additional monitoring and informative studies. 

2 Background 

2.1 Context 

We, the Queensland Government Department of Science, Information Technology and 

Innovation (DSITI), are working to address the critical strategic gaps and weaknesses in 

water models that have arisen due to the resource constraint driven focus on operational 

issues. Our objectives are to develop greater stakeholder capacity and collaboration by 

engaging with universities, scientific providers and external consultants to provide modelling 

resources for the future. Over four years we aim to improve the integration of all Queensland 

hydrology, groundwater and water quality models—not just those focused on the Great 

Barrier Reef—across multiple scales including paddock, catchment, estuary and marine. Our 

intention is to drive consistency in models and modelling practices across Queensland and, 

in the longer term, develop a ‘community of practice’ in model development and model 

application to better inform decision making.  

In this end, the purpose of this paper is to synthesise existing knowledge and experience on 

good modelling practices and principles. We have developed it based on the findings 

gathered from a literature review and an expert workshop conducted on June 21-22, 2017. 

The expert workshop: 

 Captured and synthesised the foundations and principles of best practice modelling 

procedures and model management; 

 Reflected on current approaches to modelling and model management; 
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 Developed complementary presentations on research and development (R&D) 

modelling principles targeted at modellers and for policy makers; 

 Recommended methods to retain currency of the best practice and principles of 

water modelling and links to a catalogue of government models (in a Stage 2)    

2.2 Scope and focus 
This paper’s scope covers the use of water resource models to investigate impacts on the 

environmental system in question, such as a paddock, catchment, or estuary.  It includes 

model use under both status quo conditions and in response to management actions, 

climate variations or other uncontrollable forces. It also includes model uses to adaptively 

manage a system, such as through additional monitoring and informative studies. 

We focus on water models developed for ongoing, regular and operational use. These 

models are built (or being built) to answer a variety of policy and management questions. 

Typically, their aim is to predict one, or usually more, Quantities of Interest (QoIs) such as 

indices of water quantity, quality or ecological response as a function of time and/or space. 

Inevitably, the nature and role of these models evolves over time to cope with changes in 

policy and scientific knowledge. We outline modelling practices at all stages of the model 

development and use lifecycle, taking into account the entire modelling process and the 

sources of uncertainty that need to be recognised and managed in that process. 

2.3 Paper organisation 

In this paper we: 

1. Introduce the field of modelling and outline the role of models play in decision making 

in water resource management, specifically within the context of evidence-based 

policy making (Section 3); 

2. Present the concept of best practice modelling, and discuss the need to adopt good 

modelling practices to improve models and ensure the quality of the decisions that 

are made based on their results (Section 4); and  

3. Identify and define good modelling practice in relation to the various phases and 

steps in the modelling process, including providing a checklist of the identified best 

modelling practices (Section 5). 
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3 Models and modelling 

Objective: to introduce the field of modelling and the role models play in 

decision making, specifically within the context of evidence-based policy 

making in the water sector. 

Models are approximations or simplified representations of a system of interest that link its 

state to its drivers (inputs) and responses (outputs). Models play a powerful role in assessing 

water management policies and improving the quality of decision making. Models can be 

used to: 

 Support a methodology for capturing, mapping, and consolidating the various 

sources of knowledge and data required for understanding water resource systems in 

a systematic way.  

 Provide a platform for bringing together stakeholders and scientists to engage in a 

science-informed dialogue that helps develop a shared understanding of the problem 

and possible solutions. Assembling opposing parties around a model of the problem 

can be a powerful means of sharing concerns and testing ideas with a view to 

negotiating common grounds and reaching consensus. For example, models can 

help farmers and natural resource managers come to agreement on water allocation 

rules. 

 Set up experiments, including ‘what-if’ questions, that examine system outcomes 

(QoIs) under a range of scenarios, where each scenario represents a plausible 

pathway for managing the system. 

 Perform quantitative assessments of decision options and provide objective evidence 

for linking these options to long-term benefits and costs. This information is useful for 

devising trade-off decisions in short and longer terms. 

Different types of decision models are appropriate for different types of water management 

and policy questions. However, they are all used for the same purpose: to assist in decision 

making under uncertainty. According to their use in the decision analysis process, models 

can be broadly classified into the following (Robinson, 2004): 

 Throwaway models: used only for the duration of a modelling study. Such models are 

developed to investigate one or more issues of concern for decision-making. At the 

end of the study, when the learning outcomes expected from the study are served, 

the model is no longer relevant or needed. 

 Regular use or operational models: used to support decision making and 

management on a regular basis, such as surface water models for runoff prediction 

and groundwater models for sustainable yields of an aquifer. These models often 

require a high level of accuracy, detail, and resolution to ensure the quality of 

information on which decisions are made. Most of the development effort occurs 

upfront, with continuous updates and validation required to keep the model up-to-

speed with changes in the real system, technology advances and knowledge accrual. 

 Ongoing use models: used as a part of an ongoing effort to investigate a particular 

problem and answer a variety of policy questions. The model’s scope and role may 

change over time to support the evolving requirements for decision analyses. 
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A single model can serve more than one use type, and the model use type can evolve over 

time and across projects. For example, a model that is used regularly can also be used as a 

throwaway model for a modelling project focused on promoting social learning and 

stakeholder engagement.  

A typical modelling and assessment process has four key iterative phases, each with 

inherent steps (Hamilton et al., 2015):  

1. Scoping, including a model study plan that identifies model purpose, study 

objectives, stakeholders and issues of concern; 

2. Problem framing and formulation, including conceptualisation, linking drivers and 

responses; 

3. Analysis and assessment of options, including model setup, calibration and 

validation; and 

4. Communication of findings, including simulation and evaluation. 

Most of these steps require expert and/or stakeholder engagement, for which there is now 

much guidance regarding why and how they can be achieved (e.g. Voinov and Bousquet, 

2010).   

Being approximations of the real system of interest, models only represent our partial 

knowledge and views about that system. And, because a real water resource system has 

many more issues and is far too complex to completely understand and capture in a model 

representation, uncertainty is inevitably associated with use of the model and arises in 

various ways throughout the modelling process. 

 

 

Figure 1: Phases and steps in the integrated modelling and assessment process (adapted from 

Hamilton et al., 2015) 
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Uncertainty management is now recognised as an essential part of the modelling process 

(e.g. Guillaume et al., 2011) and has quantitative and qualitative aspects (e.g. Uuisitalo et 

al., 2015; Refsgaard et al., 2007) aimed at establishing what we do and do not know about 

the predictions (QoIs) required for the problem of interest. Therefore, a model user must pay 

attention to the various steps of the modelling process in order for all interdependent 

uncertainty sources be addressed. 

 

Key Points - Modelling practices 
 Models are simplified representations of the problem of interest and used to 

answer specific management and policy questions. 

 According to their uses, models can be classified into: throwaway, regular, and 
ongoing models. 

 Uncertainty management is an essential part of the whole modelling process 
and involves quantitative and qualitative aspects for complex water resource 
issues. 

4 Modelling practices 

Objective: to present the concept of modelling practices, and the role 

good modelling practices play in improving models and assuring the 

quality of model-based decision support. 

In this section, we define best practice modelling and present an overview of literature to 

offer guidance on identifying and defining modelling practices. We also propose the use of 

tools, such as checklists and templates, as useful means to report and monitor the uptake of 

good practices. 

The quality and outcomes of a modelling process largely depend on the modelling practices 

that are undertaken at every step. Modelling literature emphasises that it is vital to build 

quality (i.e. relevance, credibility and validity) into the modelling process and its outputs.  The 

literature also reinforces that best practice modelling should use ‘proven-to-work’ practices 

for managing common problems encountered throughout the modelling process. Identifying 

best practices helps to provide guidelines for improved modelling practice and will ultimately 

lead to more accurate, credible and useful models; more insightful model-based 

recommendations; better-informed model adoption; and, most importantly, informed 

decision-making. 

The search for ways to improve the way modelling is conducted is not new. Several attempts 

have been made to investigate and identify ‘best’, ‘good’ and ‘core’ practices. (Table 1 

provides a non-exhaustive list of research geared towards developing guidance into best, 

good and core modelling practices). In the Australian water industry context, two guideline 

documents are noteworthy. Black et al. (2011) developed a set of guidelines with support 

from the eWater Cooperative Research Centre (CRC). The other is the Australian 
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Groundwater Modelling Guidelines (2012) prepared for the National Water Commission by 

Sinclair Knight Merz and the National Centre for Groundwater Research and Training. Both 

go into more technical detail than is presented here and are valuable resources to be used in 

conjunction with this document. This paper syntheses these two existing guidelines, together 

with other key literature, for non-modellers and provides checklists of questions that policy 

makers might refer to in order to understand if a modelling proposal or report has adhered to 

good practices. 

Table 1: A list (non-exhaustive) of literature offering guidance into best, good and core 

modelling practices 

Publication Scope, focus 

Jakeman et al. (2006)  Steps in development and evaluation of environmental 
models 

Refsgaard et al. (2007) Uncertainty in the modelling process 

Robinson (2007, 2008) General modelling and simulation, conceptual modelling 

Gaber et al. (2009) US EPA Guidance on the development, evaluation, and 
application of environmental models 

Rietveld et al.  (2010) Drinking water treatment, whole modelling process 

McIntosh et al. (2011) Environmental modelling, design for improved use and 
adoption 

Black et al. (2011) Guidelines for water management modelling: towards best 
practice model application 

Australian Groundwater 
Modelling Guidelines (2012) 

Model calibration and uncertainty, groundwater 

Chen, S. H. and Pollino, C. A. 
(2012) 

Environmental modelling, model set up and formulation, 
Bayesian network modelling 

Kelly et al. (2013) Environmental modelling, model selection 

Horsburgh et al. (2014) Hydrological modelling, data sharing 

Black et al. (2014) Water management, whole modelling process, scenario-
based models 

Black et al. (2015) Guidelines on implementing a risk-based approach to water 
resources planning (companion to Black et al. 2011) 

Argent et al. (2016) Environmental modelling, conceptual modelling  

van Vliet et al. (2016) Land use change, model calibration and validation 

Elsawah et al. (2017) Environmental modelling, whole modelling process, system 
dynamics  
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According to Black et al. (2011), “best practice modelling can be defined as quality assured 

model implementation to deliver a credible, robust model that is fit for purpose, and its 

application to deliver results, using methodology that is transparent, defensible and 

repeatable.” Modellers working on environmental problems not only build and use models 

according to strict fundamental disciplinary principles, such as mathematics, statistics, 

hydrology, computer science and ecology, they are also faced with the ongoing challenge of 

juggling cost, time, and other resource constraints while producing quality products and 

managing stakeholder expectations and interactions. Therefore, best practice means the 

best achievable procedures and outcomes taking into account intended modelling purpose, 

and trade-offs in knowledge, data, resource and time constraints.  

Another corroborating viewpoint of good model development and evaluation practice is in 

Jakeman et al. (2006) who outline ten basic steps of good, disciplined model practice 

towards building credible models. The authors state that best practice modelling must: 

 clearly identify the clients and objectives of the modelling exercise; 

 document the nature (quantity, quality, limitations) of the data used to construct and 

test the model; 

 provide a strong rationale for the choice of model family and features (encompassing 

review of alternative approaches); 

 justify the techniques used to calibrate the model and conduct detailed analysis, 

testing and discussion of model performance; and 

 make a resultant statement of model assumptions, utility, accuracy, limitations, and 

scope for improvement. 

These steps, expanded upon further in Section 5, should be carried out through a learning 

process, or even in partnership, between model developers, clients and other interested 

parties.  

4.1 Reporting modelling practices 

It is crucial to document the practices employed throughout the modelling process in a 

systematic and transparent way that helps decision-makers form their own judgment about 

the model’s results and improves their confidence in using the model as a decision-aid. We 

propose that a checklist of modelling practices can be an effective means to document and 

report the modelling efforts and help distinguish between good and poor modelling practices. 

Such a checklist is a minimum requirement for evaluating the modelling process and informs 

sources of model uncertainties. A ‘practices description template’ (e.g. Alwazae et al., 2015) 

is another useful tool for describing the detail of the practices implemented, including items 

including the rationale for practice use, the steps carried out in the implementation of the 

practice, and references to data sources used to carry out the practice.  
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Key points - Modelling practices 
 Good modelling practice comprises a ‘proven-to-work’ routine that improves a 

model’s quality and results. 

 Good modelling practices can be employed at every phase and step in the 
modelling process (Figure 1). 

 We suggest the use of practice documentation tools such as checklists and 
templates to document the modelling efforts and help distinguish between good 
and poor modelling practices. 

5 Identifying and defining good modelling practices  

Objective: to identify and define good modelling in relation to the various 

aspects and phases in the modelling process. 

Given that stakeholder participation spans across the modelling process (Figure 1), we start 

by discussing the general practices underpinning stakeholder engagement. Next, we present 

and discuss modelling practices related to the different modelling activities, including the 

stakeholder engagement practices specific to each phase. We support the discussion using 

examples from the literature and the findings of the 2017 expert workshop.  

5.1 Working with stakeholders 

In essence, model development and use involve social communication processes used 

throughout the modelling process to build confidence and trust with stakeholders. Successful 

management of these processes is as important as the technical model development 

because major uncertainties can emerge from basic aspects such as working on a poorly 

formulated problem, neglecting to include valuable knowledge and perspectives from key 

interest groups and experts, or by poor communication in general. However, stakeholder 

engagement can be challenging, especially in a multi-agency context with multiple intended 

model uses and end users, each with slightly different needs (e.g. government agencies and 

farmers, or operational river managers and policy planners). The effectiveness of this 

process requires well-rounded modelling competencies including good communication and 

interpersonal skills. Some useful principles to put into practice include: 

 Engage with stakeholders from the very early stages of the modelling process. This 

includes explicitly accounting and planning for the time and resources required; 

 Determine and communicate the model’s value within the context of the problem and 

develop realistic expectations about what the model and the modelling process can 

and cannot do; 

 Agree on the underlying conceptual models of the system with stakeholders; 

 Approach the process from a position of humility and goodwill, embracing 

relationship building, rather than a position of selling expertise; 

 Work with stakeholders to design communication products and model interrogation 

tools (e.g. end-user interfaces, visualisation methods) that suit their needs; 

 Adopt effective science communication practices, such as using: easy to understand 

language that avoids technical and academic jargon, filtering and synthesising large 
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amounts of information to communicate the most useful insights, and understanding 

stakeholders’ cognitive biases, and building their understanding step-by-step; and 

 Document and peer review both the model itself (including its scientific basis and 

practical implementation) and, just as importantly, the model development process to 

establish credibility and legitimacy. 

 

Checklist – Working with stakeholders 

Aspect Questions to consider 

Project actors 

and roles 

 Who will be engaged (i.e. stakeholder and interest groups, group 
size)? 

 What is the level at which each group will participate in the modelling 
process (i.e. information extraction, consultation, co-building of the 
model)? 

 Are the roles of the various stakeholders (including clients and model 
developers) clearly delineated and understood? 

 Does the project have a steering committee? If not, how is this 
decision justified? 

Process design  What participatory methods will be used to engage stakeholders? 

 When will stakeholders be engaged through the modelling process?  

Communication 

and 

expectation 

management 

 Is the information about the model’s capabilities, limitations, and 
assumptions well-communicated to stakeholders?  

 Have the expectations of stakeholders about the model been 
obtained and appropriately managed? 

 Is this information communicated in a way that is easily accessible to 
stakeholders so they can fully understand the model’s purpose? 

 

5.2 Scoping Phase 

In the scoping phase, the modelling team works 

with the client and primary stakeholders to 

establish the project’s objectives and modelling 

purpose; and chart a plan of how to realise these. 

The purpose and objectives of a model should 

include a clearly articulated set of user data 

requirements, processes to be represented, 

questions, functionalities, system boundaries and 

predictive quantities of interest (QoIs). The model’s purpose and objectives need to be 

considered within the project’s constraints, such as available time and resources, whilst 

managing client and stakeholder expectations and avoiding over-sell. This includes 

determining whether QoIs are absolute values or are relative to a baseline. It also includes 

functionality in terms of what input variables or model parameters may need to be varied as 

part of model application. The strength of evidence sought from the model, in terms of 

supporting decisions, should be agreed. For example, is it making broad generalisations to 

support state land management policy among other sources of evidence, or is it intended to 

be the main line of evidence in assessing the impacts of a local project? 



 

QWMN Good Modelling Practice Principles  15 
 
 

These considerations need to be clearly communicated to the client, along with establishing 

clear agreements on the format in which model results will be delivered (e.g. reports, raw 

computer runs, analysis results) and ways to communicate about result uncertainties (e.g. 

probability distribution functions, ranges, qualitative or categorical descriptions) and their 

visualisations and tabulations. In some situations, the client may have a very clear 

understanding of the modelling objectives. In others, the modeller and the client must work 

closely to formulate those objectives and associated requirements. Ongoing projects may 

have already specified their modelling purpose but even then there may be some advantage 

in revisiting the specification to make it more exact, and/or to simplify the problem in a way 

that still answers valuable questions but does so with more certainty.  

 

Checklist – Scoping phase 

Aspect Questions to consider 

Considering the use 

of models 

 Is there sufficient evidence (e.g. similar case studies, literature) that 
modelling can be useful for the problem? 

 Is there sufficient leadership buy-in into the use of models? If not, 
can leadership be rallied? 

 Are the primary stakeholders on board? If not, can they be brought 
on board? 

 What is the organisational history around the use of models? 

Defining the model’s 

purpose and role 

 Is the model’s use clearly stated (e.g. provide quantitative evidence, 
facilitate stakeholder engagement)? 

 Are the questions that the model is intended to answer clearly 
defined? 

 Can these questions be adequately answered within the available 
time and resources? 

 Is the model’s end user(s) clearly identified? 

Project resources Is the project sufficiently resourced to realise the defined objectives, 
including resources allocated for the following: 

 model validation and testing; 

 stakeholder engagement; and 

 data collection, analysis, and storage. 

Stakeholder 

engagement 

 How will the model users interact with the model (e.g. through 
interactive experimentation, through predefined runs to be 
conducted by the modellers)?  

 Is there a clear agreement among the modelling team and the client 
about the model’s outcomes and outputs (e.g. visualisations)? 

 How will the model users determine (or measure) what the model 
does and whether it is successful? 

Uncertainty 

communication 

 Is there a clear agreement among the modelling team and the client 
about how modelling uncertainty will be communicated? 

Documentation  Are the options and scenarios to be evaluated clearly documented? 

 Are the methods and practices used to define the model objectives 
clearly documented? 
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5.3 Problem Framing and 

Formulation Phase 

5.3.1 Model conceptualisation 

Conceptual models are qualitative 

representations of the model content, 

its components and relationships. 

Developing conceptual models 

involves making assumptions and 

simplifications. Assumptions are 

made when there are uncertainties or beliefs about the real world being modelled. 

Simplifications incorporated in the model enable more rapid model development and use, 

including recognising that there might not be knowledge or data on some processes. 

Simplifications can also be used to reduce uncertainties that would be associated with an 

overly complex model.  

Risk-focused validation of the conceptual model is needed to improve the model validity and 

credibility. This includes, from a modeller’s perspective, ensuring that the model produces 

sufficiently accurate results and is valid for the purpose at hand, and making sure that it is 

credible from a client, user and legal perspective. The risk associated with each assumption 

can be assessed (quantitatively and qualitatively as relevant) according to the level of 

confidence and impact (Guillaume and Elsawah, 2014), along with transparent 

documentation of the methods and data used to conclude the risks (Sargent, 2013). 

Validating and testing the conceptual model should not only be limited to the conceptual 

model itself, but needs to also include the process used to produce the conceptual model, 

raising questions such as: 

 Is the process of producing the conceptual model sufficiently legitimate, for example 

did it involve key stakeholders appropriately? 

 Is the process of producing the conceptual model sufficiently credible, for example 

did it involve relevant expertise and independent peer review? 

 Is the conceptual model credible and defensible by virtue of the fact that suitable 

calibration and validation procedures have been followed? 

If the strength of evidence provided by the model is examined in court, the legitimacy and 

credibility of the conceptual model are likely to be closely scrutinised. From a scientific 

perspective, a conceptual model should be treated as a hypothesis, whereby if the model 

output can be confidently concluded to be inconsistent with the observed behaviour of the 

system then the conceptual model is rejected; and if this cannot be concluded then it is 

provisionally accepted as a possible model and new observations are recommended to 

further test the model.  
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Checklist - Model conceptualisation 

Aspect Questions to consider 

Model assumptions  Are the model’s assumptions transparent and supported by 
theoretical and/or empirical evidence? 

 Are the model’s assumptions reasonable given the overall objective 
and perspective of the model? 

 Are all causal relationships explained and supported by theoretical 
and/or empirical evidence? 

 Are assumptions sufficiently validated by expert opinion and 
independent peer review? 

Stakeholders 

engagement 

 Have key stakeholders been involved in the process of developing 
the conceptual model? 

 Is the conceptual model communicated to stakeholders in an easily 
accessible way so they can understand the model’s logic, and the 
implications to the model’s results? 

 Is this information communicated in a way that is easily accessible 
to stakeholders so they can understand the conceptual model? 

Documentation  Is the conceptual model clearly documented, including reporting all 
the underpinning assumptions and simplifications? 

 Are the methods and practices to develop and validate the 
conceptual model clearly documented? 

 

5.3.2 Data collection, cleansing and pre-modelling data analysis 

Data with respect to environmental model development are typically imprecise, often sparse 

in space and/or time, with systematic and/or random errors, and/or inadequate coverage of 

conditions, rendering them insufficiently informative for model calibration. Their errors affect 

calibration of the model, while errors in data inputs also affect outputs (QoIs) when using the 

model in a predictive or simulation mode. Appropriate infilling of missing data depends on 

circumstance and simple interpolation is often inappropriate (for instance, between a sample 

taken during a river’s low-flow period and a little after the start of a flow event). Inadequacies 

in data, both from errors and non-informativeness, need to be taken into account in the 

method for calibrating a model, and appropriate limitations on its subsequent use reported 

and communicated. 

However, there is still a lot that can be done to improve such situations. Simple text-book 

analyses of data to reveal their signals and uncertainties before modelling is under-

practised, or at least under-reported. A wealth of tools is available to detect outliers, trends, 

implausible correlations, timing errors in model response, and generally to extract 

information from data. The value of simple plotting and visualisation should not be ignored. 

There is also much to be gained from paying more attention to the optimal design of 

experiments for data collection in the future. However, because collection of experimental 

data is expensive and only a limited amount of experimental data can be obtained, it must be 

recognised that not all experiments provide the same amount of information about the 

processes they are helping inform. Consequently, it is important to design experiments in an 

optimal way, such as by choosing a limited number of experimental data to maximise the 



 

QWMN Good Modelling Practice Principles  18 
 
 

value of each experiment. Optimal experimental design (OED) uses models to guide 

experiment selection and has been shown to drastically improve the cost effectiveness of 

experimental designs for a variety of models, including those based on ordinary differential 

equations, partial differential equations and differential algebraic equations. OED has been 

developed in both Bayesian and non-Bayesian settings (Atkinson and Donev, 1992).  

Data and modelling are complementary and considerable benefits can be gained by data 

collectors and managers working in close partnership with modellers. Those involved on the 

data side are in fact stakeholders in the modelling process and can thereby be shown 

appreciation of their role in the whole decision process. The partnership can be a synergistic 

one where the most appropriate data are monitored, their strengths and weaknesses known 

and opportunities sought for optimising model use by improvements in monitoring network 

design. 

While most good modelling practice guidelines include sections on data management, they 

rarely include sections on implementing data management policies that are targeted at those 

responsible for formulating and implementing government strategy to improve water 

information. ‘Good Practice Guidelines for Water Data Management Policy’, recently 

released by the Australian Bureau of Meteorology under the World Water Data Initiative, 

provides valuable guidance on standards and protocols, including licensing and open 

access. 

 

Checklist - Data collection, cleansing and pre-modelling data analysis 

Aspect Questions to consider 

Data collection 
and cleansing 
 

 Is there a clear data collection plan in place (i.e. what data, collected by 
whom, why, when and where)? 

 What procedures have been used to identify and select data sources? 

 How have these decisions been justified?  

 Have modellers been included in making these decisions? 

Data analysis 

and handling 

 Does the available data match the model’s temporal and spatial 
resolution? If not, how have mismatches been handled?  

 Have the methods used for handling mismatches been justified and 
reported in sufficient detail? 

 Has special attention been placed on data used for estimating crucial 
model parameters? Is the preliminary data analysis methodology based 
on justifiable and sound statistical grounds? 

 Have the methods used for handling missing data been justified and 
reported in sufficient detail? 

Stakeholder 
engagement 

 Have key stakeholders been involved in the process of identifying 
datasets and sources? 

 Is the data analysis communicated to stakeholders in an easily accessible 
way so they can understand the implications to the model’s results? 

Documentation  Has the quality of data been appropriately checked, assessed and 
documented? 

 Have all data used in the model been described and referenced in 
sufficient detail? 
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5.4 Analysis and Assessment 

of Options Phase 

5.4.1 Model selection 

Models can be categorised in a 

number of different ways (Jakeman et 

al. 2006; Balci, 2007; Kelly et al., 

2013), including by: 

 type (e.g. empirical, 

conceptual, physical, 

numerical, analytical); 

 treatment of space (e.g. non-spatial models, lumped spatial models, grid spatial 

models); 

 treatment of time (e.g. non-temporal, steady state, lumped discrete, dynamic); 

 composition (e.g. coupled, integrated); and 

 execution (e.g. distributed, web-based). 

Various considerations influence the modeller’s choice of the most appropriate model. First 

of all, the model needs to have the ability to estimate the parameters/variables of interest for 

the study at an appropriate scale and resolution (i.e. temporal, spatial, and thematic) which 

matches the rate of change in the system of interest (van Delden et al., 2011). Empirical and 

statistical models are appropriate only for predicting responses within the range of existing 

observational datasets (Robson, 2014). Observational datasets may consist of historical 

observations for a particular system, or observations from a range of similar systems with 

varying characteristics (e.g. similar catchments with varying land uses). If a model is to be 

used outside this range, for instance to predict effects of long-term climate change or to 

predict results for a region in a different climatic zone, then it is necessary to use a process-

based model that reflects what is known of the mechanisms of change (physical, chemical 

and biological).  

Even when using a process-based model, it is important to evaluate the assumptions 

underlying the model to verify that they still apply in the changed circumstances. For 

example, representations of the effects of variations in temperature in most aquatic 

ecosystem models assume increasing biogeochemical process rates with increasing 

temperature, such as an Arrhenious equation (Goldman, 1979). In reality, some rates, such 

as phytoplankton growth rates, will decline above an optimum temperature of around 30°C 

(Coles and Jones, 2000) so these models may need modification if applied to tropical 

regions or for climate change scenarios. Another example is the case of a hydrological 

model that is calibrated using flow estimates derived from a rating curve. Large flood events 

may take the system beyond the valid range of the rating curve, where the actual 

relationship between water level and flow may be quite different from that predicted (e.g. due 

to overbank flow). Long-term hydrological simulations may need to take into account 

changing river morphology, while for short-term simulations this is usually not necessary. 

Another crucial consideration is the ability to scale up results from the model (temporally and 

spatially). Special attention needs to be given to the spatial and temporal discretisation used 
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in the model, and how these may influence the output accuracy. Very finely grained models 

in time and/or space do not necessarily lead to more accurate results. Detailed models can 

be mistakenly perceived as highly accurate, while the benefit of using fine time steps and 

grid sizes can be over-stated in reducing the numerical error. The other pitfall to recognise 

and address is that of the available data not matching the temporal and spatial resolution of 

the model. This can result in the need to change the model resolution, implement methods to 

interpolate the data, and/or acknowledge the influence of the granularity chosen on QoIs. 

A further consideration is whether data are available as input to drive the model of choice 

and, more importantly, whether we have means to validate the model output, especially 

models of high spatial resolution. It may be valuable to seek existing knowledge, including 

from both scientific experts and land/water managers, about how the system functions, and 

how observations from other contexts (e.g. other catchments or paddocks), can be 

generalised or adjusted to be useable in the model.  

A model’s flexibility, including the ability to update code and functionalities, can be an 

important concern in model selection, especially for models whose basics are likely to have 

a long shelf life. 

Finally, there are contextual factors (e.g. past experience of the modelling team, previous 

investments in modelling platforms) and constraints (e.g. the requirement to use the same 

model across the region for consistency) that can be influential in model selection. 

In the next two sections we discuss sensitivity analysis and calibration issues. These can be 

valuable for helping decide between models of the same type but of different complexities 

such as in level of process description and/or parameterisation. 

 

Checklist – Model selection 

Aspect Questions to consider 

Time scale and 

horizon 

 Is the model’s time horizon sufficiently long to reflect all important 
differences between decision options?  

 Is the model’s temporal scale sufficient to capture the transient 
interaction among modelled processes? 

Model’s purpose and 

objectives 

 Is the selected model type appropriate to address the defined 
modelling questions? 

Data  Is the selected model type appropriate considering its data 
requirements with respect to available data? 

 Have the costs of obtaining, updating and storing this data been 
considered?  

Reuse and 

adaptation 

In case of selecting an already developed model or modelling 
components:  

 Is the model sourced from an authoritative source? 

 Is the model flexible in terms of the ease of updating code and 
functionalities? 

Documentation  Are the methods and practices used to select the model clearly 
documented? 



 

QWMN Good Modelling Practice Principles  21 
 
 

5.4.2 Sensitivity analysis 

Sensitivity analysis (SA) comprises a formal, quantitative set of methods used to identify the 

sources of uncertainty arising from model parameters and inputs, and their relative influence 

on outputs (Saltelli et al., 2004). A sensitivity index measures the ratio of a change in a 

model output (in particular QoIs) to a change in input or parameter. SA is often used as a 

step prior to model calibration and its purpose is to understand and quantify: (a) how each 

model parameter and potentially other model inputs, such as initial conditions and forcing 

variables like climate, affect relevant model outputs; and (b) how any parameter interactions 

contribute in strength to model outputs. Therefore, SA is of assistance in determining which 

parameters and parameter combinations should be prioritised in calibration, and more 

generally, which model inputs should be prioritised for uncertainty reduction. Results may 

suggest looping the modelling process back to an earlier step, such as revising or simplifying 

the conceptual model.  

SA can also direct additional measurement efforts, including whether or not to improve the 

prior information used to inform specification of sensitive parameters; improve measurement 

of inputs to which the model is particularly sensitive; or to improve monitoring in ways that 

will better constrain calibration of sensitive parameters and other model inputs. SA may also 

be used post-validation, in application of the model, to test how outputs vary over different 

management options. Identifying sensitive inputs allows future research to focus on 

increasing knowledge of the behaviour of the inputs in order to constrain the input variability 

and hence reduce the output uncertainty. Good and robust SA can save a lot of time and 

effort. Identifying insignificant inputs can also help refine model structure through the 

combining or removal of parameters that have negligible effect on the behaviour of the 

model. Table 2 provides an overview of some techniques that can be used for sensitivity 

analysis, their strengths and limitations. 

 

Methods Description Strengths and limitations 

Local SA methods, such 
as: automatic 
differentiation (Wengert, 
1964) and the Morris 
method (1991). 

Characterise sensitivity by partial 
derivatives or gradients at the 
local point. 

 Very simple and easy to 
implement and work well 
for linear models. 

 When the model is non-
linear, the results obtained 
at a nominal point are in 
general not representative 
of the entire space. 

Variance based 
techniques, such as the 
Fourier Amplitude 
Sensitivity Test (FAST) 
(Saltelli and Bolado, 
1998) and the Sobol 
(1993). 

Decompose the output variance 
into parts attributed to individual 
variables and interactions 
between variables. 

 Sensitivity is an average 
over the range selected 
and so varies with the 
range specified. 
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Methods Description Strengths and limitations 

Regional Sensitivity 
Analysis (RSA) 
(Hornberger and Spear, 
1981). 

Partitions a model output 
realisation for a given set of 
assumptions into either a 
behavioural set or non-
behavioural set,that is the set of 
input factors (assumptions, 
parameter values, model inputs) 
that satisfy the problem 
constraints and those that do not.  

 Gives insights into the 
input factors which yield 
an acceptable result. 

Active-subspaces 
(Jefferson et al., 2016). 

Identify directions in parameter 
space which may not be aligned 
with the parameter axes that 
significantly influence a QoI. 
These directions are the 
eigenvectors of a matrix derived 
from the gradient of the 
parameter-to-QoI map. 

 Can be more 
computationally efficient 
than variance-based 
techniques. 

Break-even analysis 
(Guillaume et al., 2016). 

Identifies model variables at 
tipping points where one is 
considering management options 
two at a time; and conditions and 
uncertainties can be generated to 
define at which points one option 
is as good as another. 

 Requires astute handling 
of multiple model 
variables. 

 

 

Model emulation (also known as surrogate or meta-modelling) is the practice of developing a 

simpler, usually abstract statistical, model that is fitted to a more complex model and 

approximates its outputs. The surrogate model can be used to facilitate a more thorough 

sensitivity or uncertainty analysis than would be possible with the more complex model, or it 

can be used to allow simulation of a wider range of scenarios. Fraser et al. (2013) review the 

types of emulator models that are relevant to predicting time-series of environmental 

variables and examine the errors that arise when this approach is used to upscale complex 

field-scale models into a catchment scale model. Castelletti et al. (2012) and Razavi et al. 

(2012) also review and provide examples of relevant emulation applications. Model 

emulation methods promote computational efficiencies by replacing models that have slow 

runtimes, such as integrated, multi-component models, and mesh-based physical 

representations such as in most groundwater and hydrodynamic models. 
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Checklist – Sensitivity analysis 

Aspect Questions to consider 

SA methods 
selection 

 Has sensitivity analysis been undertaken? If not, how is this justified?  

 Are the methods used for sensitivity analysis appropriate and justified? 

 Are the ranges used for sensitivity analysis stated clearly and justified?  

Use of SA results  Have the results from the sensitivity analysis been used to determine 
which parameters and parameter combinations should be prioritised in 
calibration? 

 Have the results from the sensitivity analysis been used to investigate 
possibilities for simplifying the model’s structure to improve 
computational efficiency and reduce modelling complexity? 

Documentation  Are the methods and practices used for sensitivity analysis clearly 
documented? 

 

5.4.3 Calibration and model structure 

Finding parameter values 

Model parameters may be either calibrated from data, and/or specified from prior knowledge 

such as from expert opinion or measurement. Estimated parameters will always have 

uncertainty but so will parameters that are considered known or can be measured. For 

example, in the latter case aquifer properties vary across very small scales yet a parameter 

value for conductivity obtained from a groundwater pump test at a specific location may be 

used or adjusted to represent them at some specified larger scale. The chosen level of 

model parameterisation can have significant effect on whether or not a model can reproduce 

experimental observations. This is particularly true for parameterisation of spatially or 

temporally varying fields such as conductivity. The complexity of the parameterisation of 

conductivity can range from a single parameter for a homogeneous aquifer, to multiple 

parameters for a regional conductivity, through to thousands or even millions of parameters 

for a fully spatially distributed conductivity. A single parameter may be easily estimated from 

data, however may result in poor fitting to data, whereas a highly distributed conductivity 

may lead to ‘over-fitting’ and only a subset of parameters being informed by data. 

While the purpose of model calibration is to identify the parameter sets that may be 

considered ‘optimal’ in terms of the selected objective function, often the focus is on finding 

the single best parameter set. As the optimal value of the objective function may be below a 

pre-specified threshold for the model to be considered potentially fit-for-purpose, the purpose 

of the calibration becomes a decision-point at which the modelling process loops back to one 

of the earlier stages.  

In process-based models, which are often used in groundwater, hydrodynamic and 

biogeochemical modelling studies, parameters usually represent rates and traits that are, at 

least in principle, measurable. In this case, it is often possible to derive considerable prior 

information about the expected values of parameters from the literature, or from local 

measurements. This information should not be ignored in calibration, rather can be used in a 

variety of ways, including: 

 informing Bayesian parameter estimation or uncertainty quantification approaches; 
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 setting appropriate initial values and value bounds for optimisation schemes; and 

 guiding the selection of parameters that can be assigned fixed values to reduce the 

scope of the calibration exercise and reduce the risk of ‘over-fitting’ the model. 

Whilst assuming prior knowledge may be used to constrain parameters in the formulated 

model structure, inappropriate constraints may underestimate or overestimate uncertainty 

such as the way prior information (known as ‘priors’) is selected for estimating aquifer 

parameters for conductivity and storativity. For example, an under-estimation of the variance 

in model priors will lead to a misleading under-estimation in the uncertainty of outputs of a 

groundwater model. Similarly, an over-estimation of prior uncertainty can lead to overly 

conservative estimates of uncertainty in predictions. Thus, prior knowledge should be 

assigned its own level of uncertainty and the effect of that on predicted QoIs and associated 

indicators determined. For groundwater flow, simplified models based on analytical solutions 

such as those of Raats (1978a,b;) can offer insights that can help with understanding, for 

example, the likely distance that solutes can travel from a sink, such as a river, over time; 

the location where management interventions will be most effective; and accounting for the 

fact that it could take millennia before the consequences of any interventions have effect.  

Similarly, for interflow and surface flow, analytical models (Cook et al., 2009; Cook et al., 

2011) can offer considerable insight when assessing model output.  

Selecting an appropriate objective function 

A fundamental principle for sensitivity analysis and calibration, in the context of developing a 

fit-for-purpose model, is that the target objective function should be a relevant error function 

or metric of the QoIs. While this principle may seem straightforward, its practice is weak, and 

caution is advised. In surface water hydrology, for example, there is undue attention to a 

measure of mean squared error, known as Nash-Sutcliffe efficiency, which places emphasis 

on fitting high flows more closely than low flows. Careful attention to determining the precise 

objective functions (e.g. error functions of the QoIs) is a sure way to reduce uncertainties 

that would otherwise manifest.  

Bennett et al. (2013) present a wide range of performance and objective function measures 

and methods, including visual plots, which should be considered as objective function 

metrics for optimising parameter estimation. In particular, a function(s) of the quantities of 

predictive interest (QoIs) must be deliberated and specified, requiring knowledge of the 

natural and human setting, which is often best realised through an appropriate participatory 

process (Hamilton et al. 2015). An example in hydrology that has a more specific purpose 

than the prediction of quantity fluxes, is where surface and/or groundwater modelling need to 

predict QoIs relating to ecological requirements. The QoIs in this case could relate to surface 

and groundwater levels, but might be a function of those with a more specific interest, such 

as the timing and pattern of surface and/or groundwater flows, which, in turn, might need to 

be specified in numerical terms as targets or indicators. Moreover, experts might further 

confirm how accurate, in quantitative or categorical terms, the associated predictions of the 

targets need be for the modelling to be useful.  

Sometimes a model weakness may simply be that the modeller does not effectively relate 

the aims of the modelling to either the objective functions used to optimise model 

parameters, or the relevant performance measures (Bennett et al., 2013). For example, one 

may wish to accurately predict the level of an aquifer at a set of specific locations. In this 
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case, a very fine scale spatial model will be important for capturing the desired quantities. 

However, a lumped model, which may be good at predicting total water volume in the 

aquifer, would not be capable of predicting local quantities accurately. However, the fine 

scale model may need to be most accurate at certain locations, for example, where 

interactions with surface water occur, and/or that the model may need to be most accurate at 

times when the stream is losing (or gaining) water to (or from) the aquifer. The objective 

function for model calibration, therefore, needs to take into account the QoIs and the type of 

predictive error in them that is appropriate to effectively minimise. In general, it is a good 

practice to examine the effects of different/multiple objective functions, and to perform a 

sensitivity analysis for uncertain input and parameters as well as for presumed certain 

parameters. 

Selection of calibration periods 

Examining the effects of different calibration periods is crucial. The period of calibration 

should be determined in the context of the model’s purpose and use. For example, a model 

that is calibrated under average climatic conditions, and assessed only in these conditions, 

should not be used directly to predict quantities associated with extremely wet or dry states. 

Water models calibrated on different periods will have substantially different behaviours and 

parameter values when the region of application experiences strong climate variability.  

Wherever possible, one should calibrate a model on different periods and assess the 

performance of each calibration on all other periods. This is called cross-validation and is an 

empirical integrator of uncertainties and provides a valuable assessment of the minimum 

uncertainties to be expected when making predictions. 

One consideration is the extent to which the datasets for calibration cover the potential range 

of inputs to the model rather than the size of the dataset. In some circumstances, the 

hydrologist may want the model to fit best to low flows or high flows. Since the model will fit 

best to the mean of the data set (Venables & Dichmont, 2004) the objective function and the 

weighting given to the data in different ranges needs to be carefully considered. Another way 

is to exclude data in the range where the model does not need to fit as well as a means of 

lowering the weight given to this data. 

Assessing calibration performance 

There are many methods available to assess the performance of a calibrated model, as 

presented in Bennett et al. (2013). A common deficiency in assessing calibration 

performance is the omission of a cross-correlation analysis between model residuals 

(predictions minus corresponding observations) and model inputs to assess if there is 

anything missing in the model’s explanation of outputs. Verification and validation must not 

be carried out deterministically but rather executed to account for the model uncertainty (e.g. 

variation in convergence rates of mesh refinement studies, due to parameter uncertainties). 

Identification of model structure and embracing multiple models 

Importantly, calibration can be defined to include the identification of model structure, inputs 

and boundary conditions, and not just an estimation of a model’s parameters. Model 

structure in the water domain will relate predominantly to the complexity of process (types 

and detail), assumptions considered, as well as the levels of spatial and temporal 

discretisation.  
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Formal statistical tests for differentiating among different model structures are well 

developed. They provide criteria which compare the number of parameters against the 

improvement in model fit to observations. Because of their reliance on statistical 

assumptions, formal statistical tests are best treated as guides that can be used to check the 

results of the structure recommended on other grounds such as: predictive performance on 

independent data sets, credibility of parameter estimates, and consistency with prior 

knowledge. The underlying aim is to balance sensitivity to system variables with complexity 

of representation. A key question not often asked is whether some system descriptors, for 

instance dimensionality, discretisation and processes, can be aggregated to make the model 

representation more efficient, concentrating only on what dominates the system response 

indicators at the scales of concern. Allowing more degrees of freedom than warranted in 

system representation can lead to ‘over-fitting’ (to errors) and unrealistic model behaviours 

and predictions.  

Working with multiple models is also a useful way to explore uncertainties in model 

formulations. Different model structure candidates or perspectives can be used with tools 

like sensitivity analysis to understand sources of uncertainty. Various techniques such as 

Bayesian model selection can then be used to assess the strengths and weaknesses of 

each, and under which conditions each model is more suitable. Calibrated parameter values 

can also provide clues about the structural accuracy of models. If a model provides a better 

fit to the observational data when one or more parameters are calibrated to unexpectedly or 

unreasonably high or low values, it suggests either a systematic bias in measurements or an 

error in model structure (or in values of other parameters). For example, a model that 

requires an unrealistically high parameter value for phytoplankton growth rate may be 

missing a source term (seeding of phytoplankton from weir-pool blooms, for instance, or 

from germination of akinetes) or over-estimating a loss term (perhaps it does not allow for 

the unpalatability of some phytoplankton species to grazers or does not allow for 

resuspension of diatoms settled to the sediments). 

On automated calibration tools  

There are solutions to support the automated development of model calibration, which can 

improve the efficiency of the process, however, care needs to be taken in using them. Over 

reliance on these tools may bring the risk of losing data insights that can help interpret model 

results and help understand the system. The use of automated tools should not preclude the 

use of sensibility (or common-sense) testing. It is helpful to the reliability of modelling if these 

sensibility tests are built into the models so that all model runs can be conveniently 

benchmarked. 
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Checklist - Calibration and model structure 

Aspect Questions to consider 

Methods selection 

and setup 

 Are the methods used for model calibration appropriate and 
justified? 

 Is the method used for selecting the calibration period appropriate 
and justified given the model’s purpose and use? Has this involved 
examining the effects of different calibration periods? 

 Has a cross-correlation analysis between model residuals and 
model inputs been conducted? 

 In the case of using automated model calibration tools, has 
sensibility (common-sense) testing still been conducted? 

 Has special attention been paid to accounting for calibration issues 
related to spatial heterogeneity? 

Calibration objective 

function 

 Is the target objective function(s) used for model calibration the 
relevant error function or metric of the QoI? 

 Have different/multiple objective functions been examined and 
compared in terms of their effects on the model’s fitness for 
purpose? If not, how is this justified? 

Data  Do calibration datasets cover the potential range of input 
conditions to the model? 

Use of calibration 

results 

 Have the results from the sensitivity analysis and calibration efforts 
been used to address the structural uncertainties? If not, how is 
this justified? 

Documentation  Are the methods and practices used for model calibration clearly 
documented? 

 

5.4.4 Validation and testing 

Model validation is defined by Refsgaard and Henriksen (2004) as “Substantiation that a 

model within its domain of applicability possesses a satisfactory range of accuracy 

consistent with the intended application of the model.” Validation must be considered 

through the lens of uncertainty and there are several ways that validation can be approached 

and a combination of methods is typically appropriate.  

‘Crash’ or ‘stress-testing’ the model is a simple but under-practised exercise to explore 

model strengths and weaknesses. It can be similar to scenario modelling (see Section 3.9) 

but with a different purpose in that attempts are made to see what model parameter sets, 

observation periods and other assumptions and conditions establish limitations or invalidate 

the model. This should include examining the performance of the model through time and/or 

space to assess inadequate performance. Stress-testing should be applied as much as 

resources can allow. 

Hipsey et al. (in prep.) propose a four-level evaluation framework for process-based models 

such as hydrodynamic-biogeochemical models: 

 Level 0: Is the model’s behaviour plausible in light of existing theory and system 

understanding? This can be evaluated in consultation with disciplinary experts and/or 
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stakeholders and equates to sensibility testing (see section 5.4.3). 

 Level 1: Traditional model evaluation of model performance against monitoring data, 

such as time series of nutrient, sediment and chlorophyll concentrations. Metrics 

should include measures of correlation, measures of bias and other measures of 

error. 

 Level 2: Evaluation of predicted process rates, such as comparing observed versus 

simulated nitrification and denitrification rates, zooplankton grazing rates, and net 

ecosystem metabolism. 

 Level 3: Evaluation of the model’s ability to reproduce system-scale emergent 

properties that are not built into the model’s structure and were not considered during 

calibration. Examples may include phytoplankton community structure (the 

relationship between percent nano- or pico-phytoplankton and chlorophyll a 

concentration), length scales of eddies, or the statistical distributions of nutrient 

concentrations in different parts of flood plumes. 

In water quality models, the drivers for the transport of solutes and particulates are the 

velocity of the flow (advection) and dispersion, whereas the drivers for water flow (quantity) 

are determined by the potential energy or pressure head differences. This means that 

calibrating a model for water flow does not necessarily work well for solutes and particulates. 

A crucial part of testing is placing physical bounds on the uncertainty that can exist. These 

physical bounds can help in reducing what would otherwise be unrealistic uncertainties and 

also help with understanding whether the model is giving sensible answers, as the results 

should always occur within the set bounds. For example, in the case of streamflow volume, 

the upper bound can be considered to be the rainfall volume (i.e. all the water runs off and 

appears as streamflow during an event). This means that the rainfall multiplied by the area of 

the catchment should be the upper bound for the cumulative streamflow for a rainfall event. 

The lower bound for streamflow can also be defined as the larger of zero and rainfall minus 

potential evapotranspiration multiplied by the area of the catchment, as it is unlikely that all 

of the potential evaporation will be realised.  

Similarly, limits for water quality constituents can be estimated based on sensible limits and 

used to assess if the model is giving sensible results. Defining these limits is more difficult, 

but plausible upper limits based on observed extreme values of quantities like sediment 

concentration and other water quality parameters are available. In addition, there are 

physical constraints on volumetric sediment concentration, and relationships among some 

water quality constituents that are based on stoichiometric principles.  Zero can be taken as 

the lower limit of constituent concentrations. 

When using evaporation estimates from countries outside Australia, it is necessary to check 

where the data come from. In China, they often use a 0.20 metre diameter pan, so the pan 

evaporation figures are much greater than what would be found with a class A pan (McVicar 

et al., 2005).  Because of this Cook and Jayawardane (2008 unpublished) found the pan 

evaporation had to be multiplied by 0.44 to get the reference evapotranspiration. Thus, when 

calculating bounds, it is essential to check that the data used make sense first. 

Close investigation of issues related to uncertainty propagation through coupled and 

integrated models is a promising topic for research and practice. Several groups, including 
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Borsuk et al. (2001), Webb et al. (2010) and Obenouer et al. (2014), have applied Bayesian 

Hierarchical Modelling approaches to uncertainty quantification and parameter estimation. 

Key advantages of this approach are that it allows prior information on the expected 

parameter values as well as confidence in observational data used to calibrate the model to 

be taken into account and provides both calibrated parameter values and model predictions 

in a probabilistic framework. The probability distributions that arise as outputs from one 

component of an integrated model can be used as prior distributions for input to another 

component of the integrated model system. In this way, uncertainty can be propagated 

through the model system without the exaggeration that occurs if propagating confidence 

intervals (e.g. Larssen et al., 2006). The related approach, Bayesian Melding (Poole et al., 

2000), can also be used to consider uncertainty in model structure. 

 

Checklist – Validation and testing 

Aspect Questions to consider 

Structure validation  Has the mathematical logic of the model been tested thoroughly? 

 Has expert opinion been used to validate the model’s structure? 

Behaviour validation  Has the model’s behaviour been tested against actual data 
especially that not used for calibration?  

 How does the model’s testing account for the physical bounds on 
possible uncertainties?  

 Have the model’s results been compared with those of other models 
and any differences in results explained? 

 Has the model been stress-tested? Are the methods used for 
stress-testing appropriate and justified given the model’s type and 
use? 

Uncertainty 

propagation 

 Have issues related to uncertainty propagation been thoroughly 
investigated?  

Documentation  Are the methods and practices used for model testing and validation 
clearly documented? 

 

5.4.5 Scenario analysis 

In its broadest sense, scenario analysis involves exploring multiple plausible assumptions 

about future conditions (largely model inputs), model structure and parameter values 

(Alcamo, 2001). For example, in an aquifer context, future climate will affect the amount of 

recharge of precipitation to the groundwater, making predictions uncertain. Cross-sectoral 

issues creating future uncertainties may relate to the interactions of proposed energy 

extraction projects with existing groundwater uses for agriculture, or a government policy to 

issue more groundwater access to increase food production. Scenario analysis can be used 

for many purposes (Maier et al., 2016), such as to promote discussion and sharing of 

knowledge and perspectives and/or to search for such scenarios that lead to good, 

intermediate and poor outcomes. At its core is simulation of model drivers and parameter 

samples, and analysis of the model’s QoI functions (i.e. target indicators).  

The use of well-defined, standard and consistent scenario sets (i.e. scenario library) that are 
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packaged as a part of the model is a good practice. In addition to preserving replicability, 

packaging scenario datasets with models provides three significant advantages. Packaging 

facilitates: 

1. extension of the scenarios to related domains (e.g. running the same or similar 

scenarios used with a hydrological model, but for a water quality model, or an 

integrated socio-environmental model);  

2. cross-comparison of results between models and ensemble scenario analysis; and 

3. comparison between scenario predictions from an existing model and from proposed 

new versions of the same model. 

Rather than attempting to develop a minimal set of presumptive scenarios for stakeholders 

to contemplate, an alternative approach to scenario development is to utilise a model to 

simulate a large number of possible outcomes and then allow stakeholders to deductively 

visualise the entire suite of outcomes and then articulate preferences. This approach is 

known as exploratory modelling and is attracting growing attention in the scenario analysis 

literature (Bankes, 1993; Walker et al., 2013). Exploratory modelling represents a family of 

techniques whose aim is to explore robust solutions under various future possibilities as 

captured in different model assumptions and parameter values (referred to as cases, 

scenarios, ensembles, and eras). Some of these techniques include: Robust Decision 

Making (RDM) (Groves and Lempert, 2007; Lempert et al., 2003), Scenario Discovery 

(Bryant and Lempert, 2010), Dynamic Adaptive Policy Pathways (Haasnoot et al., 2013; 

Kwakkel et al., 2016b), and Objective Robust Decision Making (MORDM) (Watson and 

Kasprzyk, 2017). In principle, these techniques share the idea of open exploration and 

searching for robust solutions. However, they vary technically in how the scenario generation 

process is conducted and the type of insights that are generated (Moallemi et al., 2017). 

There is limited understanding of the fundamental differences between these techniques, 

their relative strengths and limitations, and the implications of how uncertainty is treated, and 

solutions identified (Haasnoot et al., 2013, Trutnevyte et al., 2016). Comparative and 

evaluation studies to investigate differences and complementariness are still needed. To 

support practice, research into good practices for conducting exploratory modelling is also 

needed. 
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Checklist - Scenario analysis 

Aspect Questions to consider 

Scenario selection  Is there a clearly stated scientific approach used for defining and 
formulating scenarios in a transparent way? If not, how is this 
justified? 

 Has some consideration been given to using automated scenario 
generation tools to promote scenario consistency and diversity? If 
not, how is this justified? 

Data  Is the choice of scenario datasets described and justified? 

 Is there a proper protocol around storing and packaging the 
scenario datasets with the model? 

Documentation  Are the methods and practices used for scenario analysis clearly 
documented? 

 

5.4.6 Data and model management 

5.4.6.1 Provenance, governance, and meta-data 

Management of input, intermediate and output data is one of the more difficult aspects of 

modelling. Some of the key challenges are: 

 what and how much data to store from a model run and how many model runs to 

store; 

 how to manage updates to input data and record its provenance; 

  how to manage updates to the model executable itself; and 

 how to ensure that the modeller knows what data they are using. 

Governance of model data requires implementation of strong internal Quality Assurance and 

Quality Control (QA/QC) procedures that respect in-house work culture while improving 

practice. Management of observed data within a specialised database (e.g. Hydstra for 

hydrological data) is an industry norm that is rarely extended to modelled data. Adoption of 

new technologies such as scientific workflows and data and model service brokering 

services is limited, for instance, in the hydrology modelling community—perhaps a reflection 

of the level of control in the overall modelling lifecycle required of modellers. There can also 

be tension between corporate IT and its data governance practices and the requirements of 

the modelling community to manage exploratory testing and production environments. 

An effective data management program requires a strategic investment in effort with a 

clearly articulated vision and steps to achieve it, that is shared with users and practitioners. 

The goal may be to achieve a shift in culture, supported by in-house infrastructure and 

management. Tools such as the Data Management Maturity model (adapted from the 

Carnegie Capability Maturity Model) can be used to assist in identifying the level of data 

management that is required, and achievable. In that model, there are five levels for 

managing data. Table 3 summarises these levels in the order of highest to lowest maturity 

level. This is a simple example as it contains only three capabilities: safety, versioning and 

lineage, as extracted from the Provenance Maturity Model developed by Taylor et al. (2015). 

In this example ‘safety’ is defined as resilience to failures in hardware and/or processing 

errors; ‘versioning’ is whether there is a scheme to identify versions; and ‘lineage’ is whether 

information is kept to identify the source of the data/model. 
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Table 3 Maturity levels for three data/model capability (from Taylor et al., 2015) 

Level Data/model safety Data/model 
versioning 

Data/model lineage 

Optimising Highly valued 
business process 

Integral part of model 
management 

Intrinsic part of modelling 
practice 

Managed Automated and 
widely used 

Full adoption, and 
partially automated 

Standard practice and 
partially automated 

Defined Defined standard 
process 

Defined standards, 
mostly adopted 

Agreed metadata 
standards, mostly 
adopted 

Tactical Some backups, but 
not rigorous 

Individuals have their 
own process but not 
standard 

Some metadata recorded 
but very patchy 

Initial (Chaotic) No or ad-hoc backup 
strategy 

No versioning or 
naming standards 

No idea of source data or 
its state 

 

Capability Maturity Models have been developed for many domains, including provenance 

management (e.g. Taylor et al. 2015) and the software development process (the original 

Carnegie Capability Maturity Model). Both these models have multiple capability matrices. 

e.g. the Provenance Maturity Model of Taylor et al. (2015) has six components (one being 

Data management), each of which has multiple capabilities described at five levels of 

maturity. The use of Maturity models is recommended as they provide a ‘simple’ mechanism 

for capturing aspiration and operational reality and provides a mechanism for moving 

between levels and agreeing on what is achievable, noting that it is not necessary for each 

capability to be at the same level. 

Data and model sharing between collaborators and with the wider data provisioning 

community is improving with the increasing adoption of creative commons and data sharing 

licensing, which allows for use and reuse of data and models between jurisdictions and 

partners. The Australian Government supports research data management through its 

National Collaborative Research Infrastructure Strategy (NCRIS) funded Australian National 

Data Service (ANDS), which Australian universities and research agencies link to through 

tailored data access portals. The requirement to lodge research data (inputs and outputs) 

with ANDS as part of a modelling project proposal and planning has proved to be an 

effective way of fast-tracking cultural change towards best practice data management and 

governance.  

Parts of the data management process can be automated, but this requires a significant 

investment in time and resources and a clear understanding of the benefits gained and how 

they offset any perceived disadvantages, such as the loss of transparency. Many tools now 

exist to automate parts of the data and model management life cycles, ranging from 

relatively unsophisticated tools that manage code versioning and extract metadata from that 

code or datasets, through to ones that fully automate the model execution process. 
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5.4.6.2 Automating the data management and modelling process 

A modelling process that lacks well-thought-out and transparent experimental design inhibits 

the reproducibility of results, the effective reporting of results, and therefore, the credibility of 

the model (Teran-Somohano et al., 2014). Modellers usually go through an iterative process 

of ad-hoc experimentation and adaptation till they land on the final set of results on which to 

base recommendations. In many cases, model results are presented as a ‘bunch of results’ 

without much explanation as to why those experiments/results have been cherry-picked, and 

how they are driven from an experimental design that logically flows from the model’s 

objectives and research/policy questions. This is poor practice especially when interrogating 

large complex models, where many possible interactions among factors and outcomes play 

out. Instead, modellers need to embrace the use of automated methodologies that can 

support transparent experimental workflow and allow for systematic understanding of the 

impacts of the various relationships and factors that influence the model’s results 

(Chakladar, 2016). Methodologies, such as model-driven engineering (MDE) and model-

driven science (MDS), provide principles, techniques and tools that meet these needs 

(Yilmaz et al., 2016).  

Workflows are a useful concept and construct for designing and managing the modelling 

process itself. They provide an intuitive mechanism for the composition of the modelling and 

provide a repeatable, automated way of running and documenting all the elements that 

constitute a model execution. Sophisticated workflow engines support the ability to ‘plug-

and-play’, either through changing input datasets, managing a range of parameter sets that 

can be switched in and out, and even switching model components. They track the 

provenance of data used in the model run and the provenance of the model (at least its 

version number) and manage the storage of outputs from multiple runs.  

Workflows have been around for a long time in the business world. For example, an online 

shopping cart is a workflow with a set number of sequenced steps and prescribed logic for 

moving forward or backwards through those steps. The use of workflows to manage data 

and model life cycles is more recent. Data management tools that manage the data workflow 

are readily available, such as Truii. Scientific workflow management systems to manage the 

modelling workflow have grown out of the need to deal with big data, increased model 

complexity, and collaborative research. They are designed to support team/individual-based 

scientific experimentation and the sharing of data, models and workflows. Examples of such 

systems include workflows that manage DNA sequencing, the construction and composition 

of remotely sensed imagery, and the running of complex coupled modelling suites. There are 

many scientific workflow products available on the market, though most have come out of 

specific scientific disciplines such as bioinformatics, astronomy, chemistry and require 

significant investment in their technical back-ends, implementation and deployment.  

Electronic notebooks, such as Jupyter, can be used as ‘low-level’ workflow entry points. 

They support the writing of ‘documents’ that contain and execute code, store results, allow 

for intervention in the model execution process, and can be deployed to provide unified 

software management and data access within organisations. 
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Checklist - Automating the data management and modelling process 

Aspect Questions to consider 

Planning  Is there a clearly stated data management plan in place (i.e. 
storage, sharing, security, cataloguing, publishing, archiving, 
maintenance)? 

 Does the data management plan follow common standards for data 
management? 

 Does the modelling team have the skills and resources needed to 
manage the data? 

 Is there serious thought into the data and model management 
maturity levels, and justification for the level to be adopted? 

 Is there an agreement about whose responsibility it is to maintain 
and update this data? 

Documentation  Are the methods and practices used for data management clearly 
documented? 

 

5.5 Communication of findings phase 

5.5.1 Selecting indicators to communicate 

model results 

One of the most crucial issues when it comes to 

the communication of model results is the 

selection of the appropriate set of indicators to 

report the modelling results. Fundamentally, 

indicators reflect the objectives/values 

incorporated in the model. They vary according to 

multiple aspects, including: level (whole system or sub-system), purpose (average 

performance or variability in performance, and ‘snapshot’ or ‘pathway’), type (absolute value 

or proportional, descriptive or normative such as difference between hypothesized best 

value and the calculated value), and formulation. Different indicators can be used to 

diagnose different system characteristics. Identifying and selecting a suite of integrated and 

balanced indicators is important to ensure that the decision maker can clearly understand 

the effects different decision options have on the system over its lifetime (Bauler, 2012). For 

example, Fu et al. (2017) examined a suite of mathematical indicators used for evaluating 

the non-market value of environmental change. They concluded that all indicators have 

limitations and stressed the need for contextual information to mitigate possible biases. Also 

note that the number of indicators presented to decision makers must be managed. 

Balancing succinctness and informativeness is desirable. Thus, modellers should strive to 

educate decision makers on the need to go beyond single numbers to indicate uncertainty, 

but also realise that modellers can be too complex and overwhelming in their communication 

and the amount of data presented.  

5.5.2 Communicating uncertainty in written reports 

The language used in science policy reports is often very measured and calibrated 

(McInerny, et al., 2014), especially when acknowledging uncertainties and knowledge gaps. 
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However, this does not consider how the reader interprets these findings and the uncertainty 

implications. Special attention needs to be paid to the way uncertainty is communicated in 

written reports. The way language is used to communicate uncertainty (i.e. uncertainty 

framing) plays a significant role in how uncertainty is interpreted by the reader (Guillaume et 

al., 2017). Towards the development of best practices around framing uncertainty, Guillaume 

et al. (2017) have developed a typology of eighteen uncertainty frames. The typology has 

both a descriptive and prescriptive function to assist modellers communicate uncertainty. In 

its descriptive role, the typology can be used to describe the existing uncertainty frames (at 

least in abstracts) employed. The outcome of the descriptive function is to evaluate how the 

selection of a particular uncertainty frame influences the way the reader interprets the 

findings. In its prescriptive role, the typology gives users conceptual guidance into how to 

think and select uncertainty frames that best communicate their intended message (i.e. fits 

the purpose). The availability of a range of frames helps to raise awareness about multiple 

ways of delivering the message, which ultimately leads to more critical thinking about this 

when writing a publication or report. 

5.5.3 Visualisation 

Effective visualisation tools are needed to provide intuitive descriptions of complex and large 

volumes of simulation data. The importance of this task has been recognised, including by 

the US Department of Energy (DOE) which has funded the SciDAC Institute of Scalable 

Data Management, Analysis and Visualization (SDAV). Model visualisation is not just 

aesthetic, but effective visualisation tools can facilitate better understanding of the processes 

that produce the data and reveal interesting characteristics of the datasets. For decision 

makers, visualisation helps distil the key information without overwhelming the user with all 

the modelling details. The effectiveness of a visualisation technique depends on the problem 

on hand and consideration of factors such as audience, the intent of the message to be 

communicated (e.g. trade-offs and uncertainty), as well as the data types.  

A key challenge in model visualisation is the communication of large datasets, especially in 

problems with multiple objectives and trade-off solutions. Traditional visualisation 

techniques, such as scatter plots, are no longer appropriate tools in the visualisation of a 

high-dimensional objective space. He and Yen (2017) identified three criteria for high quality 

visualisation of high-dimensional multi-objective space. They state that a visualisation tool 

should, firstly, provide accurate information of the ‘Pareto Front’ (see below for details). 

Secondly, it should provide decision makers with a clear indication of cost-benefit and/or 

trade-off solutions. Thirdly, the tool must be scalable to higher dimensions and larger 

datasets. The authors reviewed the available approaches and evaluated their performance 

in meeting these criteria. They concluded that the reviewed techniques can satisfy one or 

two of these three criteria to some degree. However, none can fully satisfy them all, which 

leaves the door open for integrated approaches that can leverage the strengths of existing 

techniques.  

Another challenge of effective visualisation relates to uncertainty communication, especially 

when incorporating spatio-temporal heterogeneity. As mentioned above, a key tool now used 

in portraying uncertainty is the ‘Pareto Front’. Its portrayal of a prediction versus degradation 

of model fit underscores the fact that multiple models might be considered reasonable and 

provides a view of how much model fit would need to be lost in order to meet a specific 

model outcome (Australian Groundwater Modelling Guidelines, 2012). Bonneau et al. (2014) 
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present a review of methods for uncertainty visualisation, and Kinkeldey et al. (2017) a 

review of effectiveness of some of the methods. 

An important consideration when developing and using visualisation tools is understanding 

and mitigating the possible biases in audience’s interpretations, which may ultimately lead to 

over or less confidence in the results (McInerny, et al., 2014; Sacha et al., 2016). For 

example, rescaling results through visualisation can invite systematic biases. McMahon et al. 

(2015) found that a group of novice readers, who were shown a graph of climate change 

projections, misinterpreted the intended message about the role of socio-economic factors in 

the IPCC scenarios. 

 

Checklist - Visualisation 

Aspect Questions to consider 

End users  What are the assumptions (implicit and explicit) underpinning the 
methods and tools used to communicate model results (e.g. 
audience’s technical and mathematical knowledge)? 

 Is there evidence that the model visualisation is useful to the user 
and distils the message to be communicated? 

Uncertainty 

communication 

 Is there special attention given to how the user may interpret a 
model’s results especially in regard to reported uncertainty? 
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6 Conclusions 
The most notable observation about this paper is that, although some attention has been 

given to defining good modelling practices in natural resource management, there is still little 

progress across the globe in putting these into actual and routine practice—despite the 

critical need for such practices in coupling and integrating models. Much of the discourse 

around adopting good modelling practices is still conducted at a high level, such as general 

advice around comprehensive testing, without much drilling down into the details of 

implementing these recommendations.  

It is clear that there is still a strong need for an ongoing pursuit to identify, define, and 

document modelling practices. This presents an opportunity for us, the Queensland Water 

Modelling Network (QWMN), to lead the way in establishing and demonstrating good 

practices within and across our water modelling domains. The QWMN intends to focus on 

the transparent description of modelling practices at an appropriate level of detail to allow 

knowledge sharing and effective communication not only among the modelling community, 

but also among modellers, end users and decision makers. To this end, we have provided a 

series of checklists comprising questions that should be addressed in the pursuit of good 

modelling practices.  

Because modelling is as much an art as a science, and involves many choices at every step, 

progress in achieving best practice is best facilitated by undertaking case studies and 

sharing the lessons. Indeed, for the water sector, cases could be undertaken and 

experiences shared in each of the major domains (surface water, groundwater, estuary, 

marine etc.) where some of the experiences tend to differ markedly. An even more desirable 

outcome would be to achieve best practice across an issue that encompasses all the major 

domains that would lead to cultural change in modelling practice and its associated multiple 

benefits. 
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