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Executive Summary 

Catchment models are an important component of our environmental decision-making framework. They are 

used in a variety of contexts related to management of critical coastal ecosystems and landuse planning. Water 

quality predictions from catchments have typically been made using models that have been primarily 

developed for use in water resource planning and allocation applications. These models resolve hydrology at 

sub-catchment scale (few kms) and function on daily to monthly timesteps. This modelling approach is not fully 

compatible for a range of applications. An example of such an application is when the catchment models are 

coupled with three-dimensional receiving water quality models (RWQM) of estuaries for the assessment of 

estuarine environmental health.  This incompatibility arises from the much finer spatial (in the order of metres) 

and temporal scales (in the order of seconds) of the RWQMs.  

A distributed catchment modelling scheme was developed as part of this study to address issues around 

spatial and temporal resolution. This distributed model (with spatial scale in the order of 300 m) was comprised 

elements of existing models for rainfall-runoff and base flow prediction (AWBM) and routing (WBNM).  These 

models were designed and executed to predict hourly flows, therefore providing much refined granularity to 

usual water modelling information available to water managers. 

An integrated approach was taken to address cumulative model uncertainty. This approach involved using 

PEST as a tool for parameter optimisation with subsequent application of machine learning methods to model 

residuals from the parameter optimisation stage. 

Most of the comparisons between observed and predicted flow data have resulted in high (>0.8) value for 

modelling efficiency. This indicated that the new model approach derived from a combination of distributed 

model and machine learning is capable of producing a good fit to observations, particularly considering that 

the model performance statistics were calculated against high-temporal resolution (i.e. hourly) data.  

A simple empirical load generation model (based on a power law relationship) was used to estimate the load 

generation for a range of water quality constituents, including: 

• total nitrogen (TN), 

• total phosphorus (TP), 

• total suspended solids (TSS),  

• nitrogen oxides (NOx),  

• ammonia (NH4), 

• organic nitrogen (OrgN), 

• filterable reactive phosphorus (FRP), and 

• organic phosphorus (OrgP). 

The resulting parameter-optimised output for the water quality constituents presented very low modelling 

efficiency. Machine Learning methods (GBM, DRF, DNN and an ensemble method) were subsequently used 

to model the residual between the model and observed data. Outputs from the machine learning models were 

able to improve the modelling efficiency significantly (in the region of 0.5 to 0.8) for most of the water quality 

constituents. 

These modelling methods present a significant improvement in model performance over incumbent methods 

currently adopted for estuarine health assessments.
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1 Introduction 

Estuarine ecosystems are inherently complex, and their functions are influenced by a combination 

of oceans, climate, catchments and the region’s anthropogenic activity. Ecosystems like the Great 

Barrier Reef and Moreton Bay are very sensitive to the nutrient loads flowing through small streams 

in the upper catchments, aggregating in the estuaries and finally making their way to the oceans. 

The estuaries are therefore a dynamic ecotone displaying the transition between the freshwater from 

the catchment and the coastal ocean, with intrinsic ecological processes at play. 

Modelling this transition across complex receiving environments entails a nesting approach where 

outputs from one model (with different scale, complexity and functionality) are used to force the other. 

This trend is on the rise within the wider coastal ecosystems modelling community with models 

amalgamating outputs from large scale catchment models to force high resolution receiving models 

(Hipsey & Hamilton, 2015). Linking models of varying complexity and scope can lead to a cascade 

of uncertainties from each individual model and magnification in the uncertainty of final predictions. 

In Southeast Queensland, the incumbent methodology to model catchment flows involved the use of 

e-Water SOURCE to generate daily predictions, which were linearly interpolated to sub-daily 

timesteps for linkage with a receiving water model - TUFLOW FV (as outlined in the Healthy Land 

and Water report cards process). SOURCE is a lumped, semi-distributed hydrology platform and the 

spatial outputs are available for each land use unit at a sub-catchment scale. TUFLOW FV is a 

hydrodynamic model that functions at a much smaller timestep (order of seconds) and higher spatial 

resolution (order of metres).  

Rainfall events contribute with a higher proportion of pollutant loads through the river continuum into 

the estuaries, with temporal scales not longer than a few days, and with typical flow transitions 

occurring from minutes to hours. Noting these scales, water quality monitoring in the upper 

catchments is often carried out at sub-daily intervals during significant events. The daily timesteps 

(used by SOURCE) are rarely adequate to resolve storm events. As a result, performance to 

accurately predict catchment loads can be poor, comparisons with the monitored data can be 

problematic and simulated transformations across the estuarine system can be compromised to 

rectify the inaccuracies and uncertainty of the catchment model.  

Despite the issues, the inherent treatment of uncertainty from the catchment model has been 

rudimentary. As a modelling platform, SOURCE offers internal functionality to use PEST (a 

parameter estimation tool, described later in section 4), but its application is limited, and more robust 

methods are required, especially in the context of modelling within South-east Queensland. 

Process-based models like SOURCE use a combination of physical and empirical relationships to 

model complex catchment behaviour. In an ideal world, a complex physical model should be able to 

explain the whole gamut of processes acting within a system, but this is impractical. Data driven 

models (machine learning methods) explore complex, non-linear and intrinsic relationships within the 

data to predict otherwise unexplained system behaviour. A hybridisation approach of merging 

knowledge from physical and data driven methods could potentially exploit the benefits of each 

individual method. Errors in process-based model structure, parameter and data lead to both random 

and systematic error (Xu et al., 2012). In the context of catchment models, data driven models are 

https://ewater.org.au/products/ewater-source/
http://tuflow.com/Tuflow%20FV.aspx
https://hlw.org.au/report-card/
https://hlw.org.au/report-card/


Addressing uncertainty in catchment models using machine learning techniques 2 

Introduction  
 

   
 

powerful tools for discovering complex non-linear relations from data, and therefore can be used to 

capture the systematic patterns in the error of process-based models.  

With the above principles in mind, this study aimed to address this identified need for research, 

development and innovation (RD&I) in this area, entailing the development of a model that improves 

representation of sub-daily processes and can estimate and quantify its uncertainty for improved 

simulation of the linkages between catchments and the coastal ocean through the estuarine 

environment. 

More specifically, this study proposes to meet the following objectives: 

• Address structural inadequacy of the incumbent catchment model platform to meet the temporal 

and spatial resolution requirements. 

• Evaluate the performance of parameter estimation methods and the overall quantification of 

parameter uncertainty. 

• Develop machine learning techniques to model and improve model performance associated with 

residual uncertainty in the process-based model.   

The following sections describe the site used for this study, the development of an alternative 

physical model from first principles, its performance against different storm events, application of 

parameter estimation methods (PEST) and the subsequent quantification of residual uncertainty 

using machine learning methods. 
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2 Study Site 

The Bremer River catchment has been selected for this study. The catchment contributes with 

substantial flows, suspended sediment and nutrient loads to the Brisbane River estuary and 

subsequently into Moreton Bay. Healthy Land and Water (HLW) organise regular collection of event-

based water quality data at key catchment locations through the Queensland Government as part of 

the South-east Queensland Catchment Loads Monitoring Program (SEQCLMP). 

The Bremer River catchment spans an area of 203,000 Ha and is largely composed of Grazing and 

Natural Vegetation (71%), Conservation (10.5%) and Irrigated Agriculture (8.4%) as the key land 

uses. The catchment has two flow gauges operated by the Department of Natural Resources, Mining 

and Energy (DNRME), stations number 143110 (Adams Bridge) and 143107 (Walloon), with hourly 

flow data. The gauge at Walloon registers ‘no flow’ conditions through dry periods and measured 

flows ranging from 0.001 m3/s to 2,055 m3/s. The observed gauge data is 97% complete through the 

course of the whole period and is 99.8% complete during 2014-2019 (period of WQ observations). 

The following figure shows the location of the gauges and the extent of the catchment (Figure 2-1). 

Water quality data is only available at station 143107 (Walloon) during specific events for the period 

spanning 2015 - 2019. The following water quality constituents (in mg/l) are available as part of the 

SEQCLMP: 

• Total Suspended Solids (TSS) 

• Total Nitrogen (TN) 

• Nitrate and Nitrite as N (NOx) 

• Ammonium as N (NH4) 

• Organic Nitrogen as N (OrgN) 

• Total Phosphorus (TP) 

• Filterable Reactive Phosphorus as P (FRP) 

• Organic Phosphorus as P (OrgP). 
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Figure 2-1  Locality Map 
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3 Development of a Physical Model 

3.1 The case for a distributed hydrological model 

Catchment modelling is a well-established discipline within the broader environmental modelling 

community (BMT, 2020). There is an increasing focus on the behaviour of catchments during rainfall 

events and the impact on the resulting sediment and nutrient loads. Like most natural systems, 

catchments are also viewed as a collection of largely complex (sometimes random) processes at a 

micro-scale that coalesce into a system whose behaviour can be explained at a macro-level using 

basic physical relations.  

There are two major uses of hydrology models. The first involves using them to predict behaviour of 

catchments during extreme flow events (i.e. floods). These hydrology models are used to force more 

refined, 2-d models that predict inundation levels and flood extent downstream. This use-case 

involves running the models over a few days and focuses on modelling the flood hydrograph 

correctly. The second use case involves the analysis of long-term behaviour of the catchment (water 

resource allocation) and the export of nutrients and sediments through time scales of a year or longer. 

Both applications of models have a significant amount of overlap, yet different modelling tools are 

often used. Flood models have well developed methods to model flow routing between catchments 

because of the focus on getting a perfect fit on the hydrograph at sub-event time scales. Nutrient 

export models at the catchment scale function at a daily timestep and resolve functioning of a long-

term water balance which is vaguely parameterised in flood models through initial and continuing 

losses. There is therefore merit in working with both classes of models to ensure they work at sub-

daily (i.e. hourly) timescales and incorporate some of the complexities related to the water balance. 

Most of the modelling tools available have operated on a reasonably large spatial scale of the orders 

of kilometres, being delineated at the sub-catchment level to comprise large extents associated with 

the entire catchments and watersheds. These models regionalise the hydrological properties over a 

significantly large area and are often referred to as lumped parsimonious hydrological models 

(Willems et al., 2014). Each sub-catchment behaves like a bucket that drains into the next and this 

whole system replicates the functioning of streams constrained by a localised water balance. The 

main drawback with this approach is the loss of non-homogeneity within the catchment leading to an 

inadequate representation of underlying processes.  

SOURCE uses sub-catchments as its primary hydrological unit but gives an additional option of 

specifying land uses (namely functional units) as a proportion of the sub-catchment area, with the 

provision of model outputs discretised across the different land uses (Chiew & Siriwardena, 2020). 

This in fact makes SOURCE a semi-distributed hydrology model. The model (as used in Southeast 

Queensland) only operates at a daily time scale and, although it has provisions for it, the concept of 

flow routing between sub-catchments is neither well-developed nor adopted. 

Unified River Basin Simulator (URBS), which is a common flood hydrology model, uses the sub-

catchments as its basic computing unit. Muskingum routing is commonly used to route flows from 

one catchment to the other. Different options are available to model initial and continuing loss through 

rainfall events. 

http://members.optusnet.com.au/~doncarroll/index.htm
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Soil Water Assessment Tool (SWAT) is a commonly used hydrology model across the world and 

combines some of the features of SOURCE in terms of a robust water balance model and also the 

ability to route flows (using Muskingum routing) from one catchment to the other at a sub-daily 

timescale. Like SOURCE, the weakness with the SWAT modelling approach is the regionalisation of 

parameters over a large area and the subsequent loss of information. 

To overcome the issue with parameter regionalisation, a distributed hydrology model involving the 

use of structured mesh, with the mesh elements being the basic computational unit, can be adopted 

as an alternative to the models described above. The size and distribution of these elements can be 

controlled and therefore regionalisation of hydrological properties can happen at a more refined 

scale. Both fixed (square elements only) and flexible (quadrilateral and triangle elements) can be 

potentially used. The water balance can be computed on each model cell and drainage from one cell 

to the other can be specified using an appropriate routing scheme. 

Distributed hydrology models have been used extensively with several instances available in 

scientific literature (Merritt et al., 2003). Adoption of these models within the practitioner community 

has been relatively slow, due to the relatively large computing requirements. This factor has greatly 

improved with greater computational power in recent times and the use of distributed models is likely 

to increase. The components of the distributed hydrology model developed as part of the present 

study are described below. 

3.2 Model Mesh 

A flexible mesh approach was adopted as part of this study (Figure 3-1). This approach was chosen 

over the more conventional fixed grid because of the ability to mesh around areas of interest and 

add/remove resolution in the flexible mesh. This type of mesh is also used by common hydrodynamic 

models like TUFLOW FV and so this gives the added ability to use existing pre and post processing 

tools for efficient model deployment.  

The Bremer catchment model mesh has 19500 elements (both quadrilaterals and triangles), each 

with a nominal area of around 10 ha. The mesh elements were generally aligned with previously de-

lineated sub-catchment boundaries (Figure 2-1). 

The Digital Elevation Model (DEM) (DNRME, 2007) for the catchment area was interpolated on to 

the mesh cell centres to derive cell elevation values. A routing algorithm was written in Python to 

work out the order in which cells would drain from one to the other. As expected, these routes (links) 

between cells were observed to coincide with major overland flow paths (Figure 3-2).  

https://swat.tamu.edu/
http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid=%7b337F0DF2-64CD-4E26-AD21-7C63AEC1769E%7d
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Figure 3-1  Flexible mesh 
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Figure 3-2  Flow routes 

3.3 Water Balance Model 

The Australian Water Balance Model (AWBM) was adopted for calculation of run-off and subsurface 

flow in this study. This model was developed as part of the work done in the erstwhile CRC-Hydrology 

and has been applied extensively to a wide range of Australian catchments (Yu & Zhu, 2015). AWBM 

is a key component of the SOURCE modelling platform and is often used as an alternative to another 

water balance model called SIMHYD (used in the incumbent model system). 

AWBM models five storages - three surface stores to simulate partial areas of runoff, a base flow 

store and a surface runoff routing store (Figure 3-3). 

The model was modified to run on an hourly timestep by forcing with hourly precipitation and rainfall 

data. AWBM was implemented to undertake calculations on each cell element separately. 
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Figure 3-3  AWBM model structure (Yu & Zhu, 2015) 

3.4 Flow Routing 

The excess flow from each cell has to be routed through the network and a scheme was adapted 

from the Watershed Bounded Network Model (WBNM). WBNM calculates a delay separately for 

overland flow (Boughton & Askew, 1968) and stream channel (Boyd, 1978) based on the following 

empirical relationships: 

𝐷𝑜 = 𝐿 ∗  (𝐴𝑖)
0.57 ∗ (𝑄𝑗)𝑐  

𝐷𝑠 = 0.6 ∗ 𝐿 ∗  (𝐴𝑖)
0.57 ∗ (𝑄𝑗)𝑐 

𝐷𝑜 is the overland delay, 𝐷𝑠 is the stream channel delay, 𝐿 is the lag parameter, 𝐴𝑖 is the element 𝑖 

area, 𝑄𝑗 is the flow through the link 𝑗 and 𝑐 is the non-linearity constant that links flow to the lag (in 

hours). Usually the non-linearity implies that larger flows pass through with less lag and smaller flows 

have larger lag. 

This model is relatively simple (and empirical) when compared to other common schemes like the 

Muskingum routing, which models the propagation of the flood wave through a catchment with fixed 

storage. The Muskingum routing was extensively tested and was found to be numerically unstable 

https://wbnm.com.au/
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when applied to a distributed model (Barry & Bajracharya, 1995). Therefore, the Boughton & Askew 

(1968) and Boyd (1978) approximations were adopted. 

3.5 Load Generation 

In addition to flow, the model was developed to simulate eight different constituents – Total 

Suspended Solids (TSS), Total Nitrogen (TN), Nitrogen as Nitrates and Nitrites (NOx), Nitrogen as 

Ammonium (NH4), Organic Nitrogen (OrgN), Total Phosphorus (TP), Filterable Reactive Phosphorus 

(FRP) and Organic Phosphorus (OrgP). 

The following empirical relationship was used to model the generation of different constituents. 

𝐸 =  𝛾 ∗ (𝑄𝑗)𝛿 

𝐸 is the constituent concentration (in mg/l),  is a constant of proportionality and  is the exponential 

power used to scale the constituent concentration to the flow generated. This formulation is in line 

with the approximately linear relationship between the logarithms of flow and concentration (see 

Appendix A).  

More complex models involving build-up and wash-off of pollutants have also been considered (e.g. 

Wijesiri et al., 2015), and although they can be potentially applied in the future, were not considered 

in this study. 

3.6 Rainfall Distribution 

Spatial and temporal distribution of rainfall form important and necessary components of the model. 

Rainfall data is sparse and available from an array of rain gauges within the catchment. There are 

18 active rain gauge stations in the vicinity of the Bremer catchment (Figure 3-4). A raw time series 

of all the gauges was obtained from the Bureau of Meteorology (BoM) and hourly rainfall was 

calculated at each rain gauge. 

The following steps were performed to distribute (i.e. interpolate) the rainfall on to the model mesh: 

• At each timestep, rain gauges with available data were identified. 

• The distance was calculated to each station for each cell. 

• Weights were calculated for each station for each cell using the following inverse-distance 

relationship: 

𝑤 =  
(

1

𝑑𝑖
)

𝛼

∑ (
1

𝑑𝑖
)

𝛼 

where 𝑑𝑖 is the distance of a particular station 𝑖 from the cell and 𝛼 is the power. 

• The rainfall from each station was multiplied by its weight and added up to obtain the overall 

rainfall. 

𝛼 controls the interpolation between stations and determines the spread of rainfall over the grid. 

Lumped catchment models tend to spread rainfall uniformly over the whole catchment area and this 
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can often be erroneous. While rainfall interpolation aims at diminishing this effect, the distribution of 

rainfall across the catchment is often a considerable source of uncertainty in the modelling. 

 

Figure 3-4  Rainfall gauge locations 

3.7 Evapotranspiration 

Evapotranspiration is a major factor affecting the hydrology and ultimately the overall runoff from the 

catchment. Losses from evapotranspiration influence the amount of saturation in the soil water 

stores, which in turn affects the amount of runoff generated. Incumbent models like SOURCE often 

use long term datasets like SILO to obtain spatially variable evapotranspiration at a daily timescale. 

In this study, SILO data was obtained at the BoM gauging station - Hattonvale O’Shea Road (40095). 

A daily timeseries was available and this was uniformly applied throughout the catchment after 

conversion to an hourly value. The same hourly value was used throughout the day. This is a very 

rudimentary assumption and more complex relationships like the Penman-Monteith equation can be 

used to calculate spatially variable, hourly evapotranspiration. Such a relationship was not pursued 

as part of the present study. 

https://www.longpaddock.qld.gov.au/silo/
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4 Application of PEST 

Model calibration (i.e. adjustment to match observations) is an important aspect of hydrological 

models, for both flow and constituent generation. The process of ‘model calibration’ is essentially an 

ill-posed inversion problem involving observations, parameter estimates and model operation  

(Doherty, 1994).  

ℎ = 𝑍[𝑘] + 𝜖 

where ℎ is the set of observations/system state and 𝜖 is the error associated with them. 𝑍 represents 

the operation of a model (complex and non-linear), and 𝑘 is the parameter set applied. 

Regularisation is the process of achieving a unique solution to the ill posed matrix inversion. An ill-

posed inversion problem does not have a unique solution and regularisation guarantees uniqueness 

(but not necessarily correctness). Estimates of the parameter set obtained can then be used to make 

future predictions and error minimisation is done by ensuring that the prediction is roughly at the 

center of the associated posterior probability distribution. 

Manual Regularisation (Regionalisation) is often done as a first step. This often involves setting some 

of the parameters to known (best estimate) fixed values during the parameter estimation process. In 

spatial models (like catchment models) values can be fixed based on some known spatial 

relationships (like landuse, slope etc.). The fundamental assumption behind manual regularisation is 

that macro-scale system properties that are homogenous are estimable but micro-scale 

inhomogeneities are not. 

Once the initial manual regionalisation is undertaken, Singular Value Decomposition (SVD) is often 

used as an approach to progress model regularisation and involves reduction of the parameter space 

dimensions to an extent which yields a unique solution to the problem (Doherty, 1994). This 

simplification is done in a mathematically optimal way with respect to calibration data available. The 

SVD framework involves subdivision of parameters that are estimable into one subspace and 

individual or parameter combinations that are not estimable into another subspace. The framework 

allows for mathematical and computational efficiency while also being able to compute the potential 

predictive and parameter error. 

PEST was used as a parameter estimation tool to undertake the model regularisation and a global 

parameter optimisation. PEST HP (the high-performance computing optimised version of PEST) was 

used as part of this project, because of its ability to distribute model runs across different compute 

nodes and the availability of high-performance computing facility owned by BMT. As a result, the 

Jacobian matrix (a parameter ensemble that tests models sensitivity) was efficiently populated in 

parallel under practical run times.  

4.1 Regionalisation of Parameters 

As part of the model setup, there are twelve parameters that influence the flow calibration and sixteen 

others (8 constituents times 2 parameters) that influence the water quality calibration. Optimising 

about 28 parameters for each cell (19500 cells) can be an arduous task and hence a regionalisation 

approach (manual regularisation) was required to limit the total number of parameters. 

http://www.pesthomepage.org/Home.php
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A conventional approach has involved the application of land use practices to regionalise hydrology 

and pollutant export parameters. This method has been used extensively for catchment modelling 

within Southeast Queensland. A major drawback with this method is the fact that land use distribution 

within a catchment can be relatively homogenous (i.e. 71% of the Bremer catchment is covered 

under Grazing and Natural Vegetation, Figure 4-1). Regionalisation of hydrology parameters over 

such a large area is likely to result in an inadequate representation of catchment flow and transport 

properties. 

An alternative regionalisation of parameters based on slope was amenable to homogeneous 

catchment land uses, and therefore applied in this study. A regionalisation based both on land uses 

and slope is likely a more complementary approach, however this strategy was not pursued in the 

present study. The cell-wise elevations obtained previously for determining the routing were used to 

calculate slope at each cell and a classification was made based on the percentile distribution to 

have nearly equal number of cells within 10 different slope zones (Figure 4-2). These 10 zones were 

used as a basis for regionalisation of parameters. This approach supplements the potential 

weakness of using a simplistic routing scheme (that ignores catchment slope) and its parameters 

can now incorporate changes due to slope.  

𝛼, which is the parameter influencing the interpolation of rainfall on the mesh was regionalised based 

on Voronoi polygons built around 10 different rain gauges to represent their respective areas of 

influence. This was kept separate to the regionalisation of flow parameters.  

4.2 Flow Calibration 

The following parameters were selected for the optimisation process in PEST: 

Table 4-1 Summary of flow parameters 

Parameter Model Component Upper Bound Lower 
Bound 

Default 
Value 

A1 Water Balance 0.001 0.99 0.143 

A2 Water Balance 0.001 0.99 0.5 

C1 Water Balance 1 300 7 

C2 Water Balance 1 1000 70 

C3 Water Balance 1 2000 150 

K Water Balance 0.001 0.99 0.95 

Ks Water Balance 0.001 0.99 0.35 

BFI Water Balance 0.001 0.99 0.35 

𝐿 (lag parameter) Routing/Lag 0.001 10 1.7 

𝑐 (Non-linearity) Routing/Lag 0.001 0.99 0.23 

𝛼  Rainfall distribution 0.001 10 2 

Different parameter variables were created to correspond with each of the 10 slope zones. The 

parameters were approximated to be statistically independent from each other and normally 
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distributed within the upper and lower bounds specified above. This is a simplified first pass 

assumption and more complex prior distributions can also be specified. 

A multi-criteria objective function was setup to facilitate matching with hourly observation data from 

the two gauges, 143110 (Adams Bridge) and 143107 (Walloon). The objective function was weighted 

to match the following objectives: 

• Identify and match the peaks in the dataset 

• Identify and match the rising and falling limbs of the hydrograph 

• Identify and match the number of high flow events in the dataset 

• Identify and match a percentile distribution of flows through the model run period 

The following weights were applied to each observation type: 

Table 4-2 Summary of flow parameters 

Observation Group Relative Weight 

Below the 90th percentile flows 1 

Above the 90th percentile flows 3 

Percentile Distribution of Flows 10 

Maximum Flow 20 

Number of Peaks 40 
 

Flow calibration was done over a period between 18/01/2015 and 10/05/2015.  

4.3 Water Quality Calibration 

The water quality calibration was done on the parameters 𝛾 and 𝛿 for each of the constituents. 

Regionalisation of these parameters was done based on slope in this study.  

Since, 𝛾 and 𝛿 have been specified for each constituent (eight in total) and the regionalisation was 

done for each of the 10 slope zones, there are 160 different parameter variables available for the 

optimisation process.  

Similar assumptions adopted in the flow calibrations around the parameters being normally 

distributed within the upper and lower bounds were applied.  
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Figure 4-1  Catchment land use 
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Figure 4-2  Catchment Slope 
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5 Machine Learning Methods 

Machine learning methods exploit non-linear relationships within known data sources (predictors) to 

predict complex system behaviour. A hybridisation of a calibrated physical model (like the one 

described in the previous sections) with machine learning methods to predict model residuals could 

potentially improve the overall prediction quality. 

The following four different machine learning methods were tested in the present study: 

• Gradient Boosting Machine (GBM) 

• Distributed Random Forest (DRF) 

• Deep Neural Network (DNN) 

• An ensemble method using a combination of the above three (Ens). 

Distributed Random Forest (DRF) is an ensemble machine learning technique that can be used for 

both regression and classification tasks. DRF uses multiple decision trees whose predictions are 

aggregated using bootstrap aggregation, also commonly called bagging. This involves using a 

different data sample for training each tree with replacement from the original set (Breiman, 2017). 

Gradient Boosting Machines (GBM) is a framework where decision trees or any form of base learners 

are recursively improved in terms of their prediction quality. The first step involves fitting the model 

to the data, then fitting a model to the residuals and getting the new model by combining the previous 

model and the residual model. The iteration process is described as: 

𝐹(𝑥) = 𝐹1(𝑥) → 𝐹2(𝑥) = 𝐹1(𝑥) + ℎ1(𝑥) … → 𝐹𝑀(𝑥) = 𝐹𝑀−1(𝑥) + ℎ𝑀−1(𝑥) 

ℎ𝑀(𝑥) simply represents a model of the residuals while 𝐹𝑀(𝑥) is a model of the predictions from the 

base learner. 

The underlying base learner used typically with DRF and GBM methods is the Classification and 

Regression Tree (CART). As the name suggests they can be used for both classification and 

regression tasks. Assuming 𝑅𝑑 is the data space, the data can be split into 𝐾 disjoint subspaces 

{𝑅1, 𝑅2, … , 𝑅𝑘} where each 𝑅𝑗  ⊂  𝑅𝑑 . The same decision/prediction is made for all 𝑥  𝑅𝑗 for each 

feature subspace. The following algorithm is used for generating regression trees (Breiman, 2017): 

• Begin with the first feature subspace. 

• For each feature 𝑗 =  1, … , 𝑑 and for each value v  𝑅 on which a split is possible: 

○ Split the dataset: 

𝐼𝐿 = {X1, 𝑥𝑖
𝑎  <  v}and 𝐼𝑅 = {X2, 𝑥𝑗

𝑎  ≥  v}  

○ Estimate the average 𝑦 for each node using 𝑦𝑅̅̅ ̅ 𝑎𝑛𝑑 𝑦𝐿̅̅ ̅. 

𝑦𝐿̅̅ ̅ =
∑ 𝑦𝑖𝑖∈𝐼𝐿

|𝐼𝐿|
 𝑎𝑛𝑑 𝑦𝑅̅̅ ̅ =

∑ 𝑦𝑖𝑖∈𝐼𝑅

|𝐼𝑅|
  

○ Estimate the quality of the split by calculating the squared loss. 
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𝐿2 =  ∑ (𝑦𝑙 − 𝑦𝐿̅̅ ̅)2
𝐿

𝑙=0
+ ∑ (𝑦𝑟 − 𝑦𝑅̅̅ ̅)2

𝐿

𝑙=0
 

• Choose the split with minimal loss. 

• Do the process recursively on both children. 

Both DRF and GBM are ensemble methods and combine a number of regression trees to make 

predictions. The averaged values in the terminal node of each tree are treated as the prediction of 

that tree and the average of all the trees is taken as the final prediction. 

Deep Neural Networks (DNN) are a group of algorithms modelled loosely on the functioning patterns 

of a human brain. The key idea is to recognise underlying patterns and in a way trace back raw data 

through these identifiable features in the data. These algorithms have been used in a variety of 

clustering and classification applications like image recognition and feature identification (Sutskever 

et al., 2013).  

The stacked ensemble method within H2O determines the optimal combination of a collection of 

prediction algorithms (GBM, DRF and DNN) in this case using a process called stacking (van der 

Laan et al., 2007). 

5.1 Key Predictors  

Predictors are the key sets of data which machine learning methods employ to build non-linear 

relationships. A suite of predictors have been previously proposed in (Wang et al., 2019)and these 

include lagged hydrological and rainfall data. 

The following table lists some of the key predictors: 

Table 5-1 List of machine learning predictors 

Key Predictor Description 

𝑄 Total Flow (raw, lagged by 4 days and 7 days) 

𝑄𝐵𝐹 Total Base Flow (raw, lagged by 4 days and 7 days) 

𝑄𝑄𝐹 Total Quick Flow (raw, lagged by 4 days and 7 days) 

𝑃 Total weighted precipitation (raw, lagged by 4 days and 7 days) 

𝐽𝐷 Calculated Julian Day 

𝑐𝑜𝑠(𝐽𝐷) Cosine of the Julian Day 

𝑠𝑖𝑛(𝐽𝐷) Sine of the Julian Day 

All constituents Other constituents will also be used. 

5.2 Modelling Process 

H2O was used as the basic computation engine to implement the machine learning algorithms 

described earlier. A version of H2O compatible with Python was used.  

The following steps were implemented as part of the modelling process: 

• All the predictors were arranged in a H2O data frame and the predictors were clearly identified.  

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html
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• The main aim of the models was to predict the error between observed and modelled values. 

• The data frame was split into a ratio of 70:30 with 70% being used for training and the remaining 

30% used for testing. 

• A set of hyper-parameters were described for each of the three methods – GBM, DRF and DNN. 

• The three methods were implemented with a random grid search to identify the best set of hyper 

parameters. 

• Once the best model was identified for each, it was run in prediction mode to model the error for 

the whole WQ timeseries. The contribution of each individual variable to the predictive ability of 

the model was also output as a table.  

• The best set of models amongst the three was used to create an ensemble. 

• The ensemble was also run to model the error for the whole timeseries. 

• The error was added back to the predictions to constitute the final predictions. 

The following section compares the performance of these methods individually against the physical 

model.  
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6 Modelling Results 

This section describes the modelled results obtained sequentially through each process. Here we 

note that machine learning was only applied to the water quality component of the modelling, noting 

flow is one of the predictors. 

6.1 2011 Event with default values 

The model was run for the major flow event in Jan 2011 using default hydrological values. Sheet 

plots were prepared to show the spatial distribution of rainfall and streamflow across the Bremer 

catchment. The spatial plots clearly indicate that the model can replicate some of the underlying 

physical characteristics related to flow connectivity.  

 

Figure 6-1  Spatial distribution of rainfall and flow 

6.2 Performance of Flow Model 

The model was calibrated to four small storm events between 18/01/2015 and 10/05/2015. Small 

storm events are particularly difficult to model given the rainfall spatial-temporal distribution is not as 

uniform as a large-scale event, and therefore the interpolation of rainfall between rain gauges is likely 

to be less accurate. Spurious data at the rain gauges is also another factor that was found to affect 

the calibration (not shown). 
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The following results were obtained at the end of the flow calibration (Figure 6-2). 

 

Figure 6-2  Flow calibration - 2015 



Addressing uncertainty in catchment models using machine learning techniques 22 

Modelling Results  
 

   
 

The model was re-run over other periods of significant rainfall. Comparisons against observations in 

different periods are shown in Figure 6-3 to Figure 6-10. Note that the range of flow changes across 

the different figures to better illustrate the flow evolution. 

 

Figure 6-3  Flow comparison – 2011  
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Figure 6-4  Flow comparison – 2013 
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Figure 6-5  Flow comparison – 2017 
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Figure 6-6  Flow comparison – 2014 to 2015 
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Figure 6-7  Flow comparison – 2015 to 2016 
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Figure 6-8  Flow comparison – 2016 to 2017 
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Figure 6-9  Flow comparison – 2017 to 2018 
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Figure 6-10  Flow comparison – 2014 to 2018 (combined with statistics) 
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Figure 6-11  Flow Exceedance Probability at Walloon – 2014 to 2018 

6.3 Additional Model Statistics 

Moriasi et al.(2008) is commonly used as a benchmark to evaluate performance of catchment 

models. It has been recommended that common statistics like Nash-Sutcliffe efficiency (NSE), root 

mean square error divided by the standard deviation (RSR), the percent of bias (PBIAS) and the 

coefficient of linear determination (r) are calculated on monthly flows. Table 6-1 shows a comparison 

of the results were obtained for the model run from 2014 to 2018 against similar predictions by a 

SOURCE model for the same gauge. 

The SOURCE model used for the comparison was developed as part of a previous modelling study 

for Queensland Government to set target loads for estuaries in south-east Queensland. The model 

was run between a period from 2014 to 2016 (BMT, 2018). The new model, in comparison to 

SOURCE, presented improved performance according to all Moriasi et al. (2008) statistical 

indicartors, particularly RSR, r and PBIAS. 
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Table 6-1 Summary of model monthly statistics 

Statistic Value for 
model 
predictions 

Value for 
SOURCE 
predictions 

Quality 

RSR 0.25 0.76 As close to 0 as possible (considered ‘very good’ 
when less than 0.5) 

NSE 0.94 0.92 As close to 1 as possible (considered ‘very good’ 
when greater than 0.75) 

r 0.98 0.67 As close to 1 as possible 

PBIAS 0.05 0.42 As low as possible (considered ‘very good’ when 
less than 0.1) 

6.4 Water Quality Calibration 

The water quality calibration was done over the same period as flow – 18/01/2015 to 10/05/2015. 

The model was run over a prolonged period covering the water quality observations. Comparisons 

with the machine learning methods are also shown (Figure 6-12 to Figure 6-19). Here it is noted that 

machine learning methods were only applied to water quality predictions and not to flow. 

Observations plotted in the figure show the division between the training and testing datasets.  

The following statistics were examined: 

• The r statistic 

• Root mean squared error (RMSE) 

• Average error (AE) 

• Absolute average error (AAE) 

• Modelling efficiency (MEF). 

Univariate statistics are sensitive to phase errors and should be considered in concert with the 

timeseries plots for this reason.  The suite of metrics should also be considered in their entirety, as 

some statistics may provide a misleading impression of the skill of the model. For example, a score 

of 1 for the r statistic indicates that the model varies perfectly in step with the observations, but it 

says nothing about any bias that may be present.  Also, high scores for RMSE, AE and AAE may 

indicate a bias within the model, or may just be the result of one or two outlier observations that affect 

the overall score.  The following provides some notes on interpreting each metric: 

• r 

○ Varies between -1 and 1, with a score of 1 indicating the model varies perfectly with the 

observations and a negative score indicating the model varies inversely with the observations. 

Model and observations do not need to match to provide a high score, as a consistent bias 

may be present. 

• RMSE 

○ Measures the mean magnitude, but not direction, of the difference between model data and 

observations. This accounts for the cancelling of positive and negative errors, but is weighted 
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towards large errors and is therefore sensitive to outliers. Values near zero indicate good 

model skill. 

• AE 

○ Measures the mean magnitude and direction of the difference between model data and 

observations, and hence can be used to measure bias. Values near zero are desirable but 

negative and positive errors cancel each other out so low scores can be misleading. 

• AAE 

○ Also measures the mean magnitude, but not direction, of the difference between model data 

and observations.  AAE is always equal to or lower than the RMSE and the difference between 

the two is a measure of the variability of the errors. If the difference between AAE and RMSE 

is low, this indicates a consistent bias and low error variability; if the difference is large, this 

indicates a small number of outliers and high error variability. Values near zero indicate good 

model skill. 

• MEF 

○ Is a measure of how well a model predicts observations relative to the mean of the 

observations. A value near 1 suggests the model is skilful. A value near 0 suggests the model 

is no better at predictions than the average of the data. A value below 0 indicates that the 

mean of the observations would be a better predictor than the model. 

All the model stats described above have been calculated for each model hybridization and 

separately for the training, testing and complete timeseries. A table showing all the stats for each 

model and each data subset is presented in Table 6-2 to Table 6-9. The plots also indicate the 

statistics for the whole timeseries, with the training statistics show in parentheses. 

The plots have been shown below. 
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Figure 6-12  TSS comparison 
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Table 6-2 Summary of performance statistics for TSS predictions 

Model Statistic Training Test Complete 

Model r - - 0.341 

Model RMSE - - 67.949 

Model AE - - 2.324 

Model AAE - - 43.364 

Model MEF - - 0.115 

GBM r 0.975 0.822 0.928 

GBM RMSE 16.286 45.353 27.606 

GBM AE -0.647 0.112 -0.436 

GBM AAE 10.052 27.137 14.790 

GBM MEF 0.945 0.664 0.854 

DRF r 0.967 0.819 0.921 

DRF RMSE 19.301 46.690 29.559 

DRF AE 0.033 -2.227 -0.594 

DRF AAE 13.361 26.990 17.141 

DRF MEF 0.923 0.644 0.832 

DNN r 0.885 0.773 0.850 

DNN RMSE 32.497 49.903 38.129 

DNN AE -1.449 -4.823 -2.385 

DNN AAE 20.116 28.310 22.388 

DNN MEF 0.783 0.593 0.721 

Ens r 0.954 0.866 0.926 

Ens RMSE 21.198 40.252 27.821 

Ens AE 1.688 -0.744 1.014 

Ens AAE 13.970 23.005 16.475 

Ens MEF 0.908 0.735 0.852 
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Figure 6-13  TN Comparison 
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Table 6-3 Summary of performance statistics for TN predictions 

Model Statistic Training Test Complete 

Model r - - 0.231 

Model RMSE - - 0.466 

Model AE - - -0.087 

Model AAE - - 0.356 

Model MEF - - -0.015 

GBM r 0.931 0.756 0.873 

GBM RMSE 0.164 0.338 0.226 

GBM AE -0.002 -0.007 -0.004 

GBM AAE 0.116 0.236 0.149 

GBM MEF 0.861 0.570 0.761 

DRF r 0.940 0.753 0.880 

DRF RMSE 0.158 0.339 0.224 

DRF AE -0.002 -0.008 -0.004 

DRF AAE 0.119 0.251 0.156 

DRF MEF 0.871 0.565 0.766 

DNN r 0.808 0.760 0.791 

DNN RMSE 0.266 0.335 0.287 

DNN AE 0.059 0.019 0.048 

DNN AAE 0.212 0.246 0.222 

DNN MEF 0.634 0.576 0.615 

Ens r 0.922 0.839 0.894 

Ens RMSE 0.172 0.282 0.208 

Ens AE 0.019 0.003 0.014 

Ens AAE 0.128 0.201 0.148 

Ens MEF 0.848 0.700 0.797 
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Figure 6-14  NH4 Comparison 
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Table 6-4 Summary of performance statistics for NH4 predictions 

Model Statistic Training Test Complete 

Model r - - 0.017 

Model RMSE - - 0.041 

Model AE - - -0.005 

Model AAE - - 0.012 

Model MEF - - -0.046 

GBM r 0.594 0.202 0.528 

GBM RMSE 0.040 0.017 0.035 

GBM AE -0.001 0.003 0.000 

GBM AAE 0.010 0.011 0.010 

GBM MEF 0.235 -0.183 0.217 

DRF r 0.675 -0.065 0.583 

DRF RMSE 0.036 0.022 0.033 

DRF AE -0.0003 0.0031 0.0007 

DRF AAE 0.012 0.012 0.012 

DRF MEF 0.365 -0.886 0.309 

DNN r 0.368 -0.019 0.273 

DNN RMSE 0.043 0.023 0.038 

DNN AE 0.0001 0.0056 0.0017 

DNN AAE 0.014 0.013 0.013 

DNN MEF 0.123 -1.050 0.070 

Ens r 0.383 0.299 0.361 

Ens RMSE 0.044 0.016 0.038 

Ens AE -0.001 0.002 0.000 

Ens AAE 0.012 0.010 0.011 

Ens MEF 0.083 0.066 0.084 
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Figure 6-15  NOx Comparison 
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Table 6-5 Summary of performance statistics for NOx predictions 

Model Statistic Training Test Complete 

Model r - - 0.068 

Model RMSE - - 0.165 

Model AE - - -0.068 

Model AAE - - 0.091 

Model MEF - - -0.218 

GBM r 0.969 0.824 0.924 

GBM RMSE 0.037 0.092 0.058 

GBM AE 0.001 0.009 0.003 

GBM AAE 0.024 0.055 0.033 

GBM MEF 0.934 0.673 0.850 

DRF r 0.966 0.853 0.931 

DRF RMSE 0.042 0.088 0.059 

DRF AE 0.0005 0.0075 0.0024 

DRF AAE 0.031 0.058 0.038 

DRF MEF 0.914 0.700 0.845 

DNN r 0.739 0.765 0.745 

DNN RMSE 0.097 0.106 0.100 

DNN AE 0.004 -0.001 0.003 

DNN AAE 0.064 0.069 0.065 

DNN MEF 0.545 0.565 0.552 

Ens r 0.970 0.881 0.941 

Ens RMSE 0.036 0.078 0.051 

Ens AE -0.002 -0.001 -0.001 

Ens AAE 0.025 0.043 0.030 

Ens MEF 0.938 0.763 0.881 
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Figure 6-16  Organic Nitrogen Comparison 
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Table 6-6 Summary of performance statistics for Organic Nitrogen predictions 

Model Statistic Training Test Complete 

Model r - - 0.320 

Model RMSE - - 0.232 

Model AE - - -0.085 

Model AAE - - 0.172 

Model MEF - - -0.474 

GBM r 0.915 0.773 0.872 

GBM RMSE 0.076 0.130 0.094 

GBM AE -0.003 0.002 -0.001 

GBM AAE 0.046 0.098 0.061 

GBM MEF 0.833 0.594 0.758 

DRF r 0.913 0.740 0.862 

DRF RMSE 0.081 0.140 0.101 

DRF AE 0.000 0.002 0.001 

DRF AAE 0.057 0.108 0.071 

DRF MEF 0.809 0.527 0.720 

DNN r 0.796 0.581 0.731 

DNN RMSE 0.114 0.171 0.132 

DNN AE -0.011 0.009 -0.005 

DNN AAE 0.083 0.128 0.095 

DNN MEF 0.627 0.301 0.525 

Ens r 0.927 0.825 0.896 

Ens RMSE 0.072 0.116 0.086 

Ens AE -0.006 0.001 -0.004 

Ens AAE 0.045 0.084 0.056 

Ens MEF 0.852 0.677 0.797 
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Figure 6-17  TP Comparison 
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Table 6-7 Summary of performance statistics for TP predictions 

Model Statistic Training Test Complete 

Model r - - 0.311 

Model RMSE - - 0.241 

Model AE - - -0.146 

Model AAE - - 0.199 

Model MEF - - -0.734 

GBM r 0.895 0.700 0.841 

GBM RMSE 0.080 0.136 0.099 

GBM AE 0.0004 0.0044 0.0015 

GBM AAE 0.052 0.096 0.064 

GBM MEF 0.801 0.489 0.707 

DRF r 0.918 0.729 0.866 

DRF RMSE 0.076 0.133 0.095 

DRF AE 0.0001 0.0004 0.0002 

DRF AAE 0.060 0.100 0.071 

DRF MEF 0.823 0.517 0.731 

DNN r 0.859 0.630 0.792 

DNN RMSE 0.095 0.149 0.113 

DNN AE -0.009 0.000 -0.006 

DNN AAE 0.073 0.107 0.082 

DNN MEF 0.720 0.392 0.622 

Ens r 0.952 0.798 0.908 

Ens RMSE 0.057 0.115 0.078 

Ens AE -0.012 -0.009 -0.011 

Ens AAE 0.043 0.078 0.052 

Ens MEF 0.901 0.634 0.821 
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Figure 6-18  FRP Comparison 
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Table 6-8 Summary of performance statistics for FRP predictions 

Model Statistic Training Test Complete 

Model r - - 0.160 

Model RMSE - - 0.200 

Model AE - - -0.119 

Model AAE - - 0.160 

Model MEF - - -0.968 

GBM r 0.966 0.863 0.938 

GBM RMSE 0.037 0.072 0.049 

GBM AE -0.0002 0.0038 0.0009 

GBM AAE 0.017 0.051 0.027 

GBM MEF 0.932 0.743 0.880 

DRF r 0.928 0.818 0.899 

DRF RMSE 0.056 0.084 0.065 

DRF AE 0.0002 0.0075 0.0022 

DRF AAE 0.042 0.065 0.048 

DRF MEF 0.846 0.658 0.794 

DNN r 0.897 0.405 0.693 

DNN RMSE 0.070 0.181 0.113 

DNN AE -0.030 -0.005 -0.023 

DNN AAE 0.053 0.085 0.062 

DNN MEF 0.755 -0.604 0.376 

Ens r 0.965 0.783 0.914 

Ens RMSE 0.038 0.091 0.058 

Ens AE -0.002 0.010 0.002 

Ens AAE 0.028 0.053 0.035 

Ens MEF 0.927 0.595 0.835 
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Figure 6-19  Organic Phosphorus Comparison 
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Table 6-9 Summary of performance statistics for Organic Phosphorus predictions 

Model Statistic Training Test Complete 

Model r - - 0.021 

Model RMSE - - 0.035 

Model AE - - -0.017 

Model AAE - - 0.022 

Model MEF - - -0.589 

GBM r 0.742 0.349 0.629 

GBM RMSE 0.019 0.028 0.022 

GBM AE 0.0002 -0.0009 -0.0001 

GBM AAE 0.010 0.017 0.012 

GBM MEF 0.522 0.082 0.391 

DRF r 0.838 0.041 0.553 

DRF RMSE 0.017 0.035 0.023 

DRF AE 0.000 0.001 0.001 

DRF AAE 0.011 0.021 0.014 

DRF MEF 0.628 -0.462 0.301 

DNN r 0.547 0.206 0.447 

DNN RMSE 0.023 0.029 0.025 

DNN AE 0.001 -0.001 0.001 

DNN AAE 0.014 0.020 0.015 

DNN MEF 0.291 -0.023 0.199 

Ens r 0.688 0.667 0.683 

Ens RMSE 0.021 0.023 0.021 

Ens AE -0.001 -0.002 -0.002 

Ens AAE 0.010 0.014 0.011 

Ens MEF 0.413 0.390 0.408 

Figure 6-12 to Figure 6-19 indicate significant improvements in modelling efficiency between the 

parameter-optimised model output and the hybridised machine learning model. The following table 

summarises the improvements for each of the variables. 
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Table 6-10 Summary of machine learning model outputs 

Variable Best Hybrid Improvement in MEF 

TSS GBM 0.12 to 0.85 

TN Ens -0.02 to 0.8 

NH4 DRF -0.05 to 0.3 

NOx Ens -0.22 to 0.88 

OrgN Ens -0.47 to 0.8 

TP Ens -0.73 to 0.81 

FRP GBM -0.97 to 0.88  

OrgP Ens -0.59 to 0.4 

6.5 Parameter Identifiability 

Calculations were made on the parameter identifiability and relative uncertainty reduction of each of 

the parameters. Different results were obtained for flow calibration and the water quality calibration.  

107 of the 120 parameters related to the flow calibration were found to be identifiable and this could 

potentially be a result of the large amounts of hourly flow data used for the calibration.  

30 of the 160 parameters were found to be identifiable as part of the water quality calibration and 

this could be attributed to the relatively fewer observations. 
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7 Discussion 

7.1 Flow Predictions 

The physical model developed as part of this study has used a combination of other known and 

commonly used conceptual models to enable discretization in both spatial and temporal scales. The 

results shown above clearly indicate that the combination of the distributed physical model and 

machine learning techniques can enhance the predictive capabilities of the model. This approach 

can be particularly useful when the model is being coupled with another model that has comparable 

spatial and temporal resolution. Enhanced discretization also enables the model to be used reliably 

for applications like the quantification of nutrient loads from the catchment, where temporal resolution 

around events is required to obtain more reliable predictions. This can be particularly useful within 

the context of nutrient management in coastal catchments (e.g., Great Barrier Reef, Moreton Bay). 

Most of the comparisons between observed and predicted data have resulted in high (>0.8) value for 

MEF. This indicates a good fit especially considering that comparisons are against hourly data. A 

key contributor to the performance of this method is the availability of reasonably good rainfall data. 

The coverage of rain gauges is excellent around the catchment and this has a direct impact on model 

performance. Having said this, there still exists uncertainty in interpolation of this data on the model 

grid. 

A key feature of model performance has been the resolution around small storm events. Incumbent 

models do not resolve these events and quite often they overestimate nutrient loads to the rivers’ 

upper catchment. This conclusion was borne by the event-based, observed data provided by Healthy 

Land and Water. 

7.2 Water Quality 

A very simple load generation model was deployed as part of this study. This modelling approach is 

similar to the incumbent modelling approach and has significant potential for improvement. The load 

generation from the catchment by itself did not perform well against observed data. The modelling 

efficiency was very low and there was an over-dependence on flow as a key driver of load generation.  

The parameter optimisation with PEST was done over a relatively small observation period due to 

runtime constraints. There could have been potential overfitting of the parameters to those data 

points. Total nitrogen predictions are an example of this behaviour, noting its concentration 

manifested as an almost constant dry weather concentration, occasionally peaking during events.  

7.3 Machine Learning 

Machine Learning was observed to be an effective tool in modelling some of the non-linear 

unexplained residuals between observed and modelled data. GBM and DRF were quite effective in 

modelling the residuals. Models like DNN can sometimes result in counter-intuitive model behaviour, 

for example, concentrations rising and falling, somewhat erratically during some flow events (Figure 

6-18). 
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Data driven models hybridised with a physical model can significantly improve the predictive ability 

of the combined model. Combined model performance shows that there was a significant 

improvement in modelling efficiency across all water quality variables. 

7.4 Future Work 

The physical model has currently been prototyped in Python. While this has provided a flexible 

programming environment, runtimes and computing efficiency has been lagging. There is significant 

potential to improve computing efficiency using compiled code from C, FORTRAN etc. There is also 

significant opportunity in migrating some of the code base on to CUDA to exploit the efficiencies from 

running models on Graphical Processing Units (GPUs). 

In the current setup, regionalisation of water quality parameters has been done based on catchment 

slope only. This approach potentially overlooks the importance of landuse in nutrient generation. A 

hybridised approach using parameter groups based on a mix of landuse and slope can be developed 

to improve model skill. 

This study has demonstrated the improvement in model skill using a discretised spatial and temporal 

approach. Implementation of similar methods in other catchments will help build credibility and these 

methods can gradually replace incumbent methods. 

The proposed modelling approach is likely to improve predictions for flood modelling as well. This 

could be another area of future work. 

Interactions between surface water and ground water are still an area of research and this model 

can potentially be used in conjunction with MODFLOW to model the integrated system.  

 

 

 

 

 

 

 

 

 



Addressing uncertainty in catchment models using machine learning techniques 52 

References  
 

   
 

8 References 

Barry, D. A., & Bajracharya, K. (1995). On the Muskingum-Cunge flood routing method. Environment 

International, 21, 485–490. https://doi.org/10.1016/0160-4120(95)00046-N 

BMT (2020). Strategic Review of Queensland Water Models 

BMT (2018). EHP Target Loads Modelling. http://203.8.128.186/water/policy/pdf/sustainable-loads-

modelling-seq-catchments.pdf 

Boughton, W. C., & Askew, A. J. (1968). Hydrological characteristics of Catchments and Lag time 

for natural catchments. http://researcharchive.lincoln.ac.nz/handle/10182/5687 

Boyd, M. J. (1978). A storage-routing model relating drainage basin hydrology and geomorphology. 

Water Resources Research, 14(5), 921–928. https://doi.org/10.1029/WR014i005p00921 

Breiman, L. (2017). Classification and Regression Trees. CRC Press. 

https://books.google.com.au/books?id=MGlQDwAAQBAJ 

Chiew, F. H. S., & Siriwardena, L. (2020). Estimation of Simhyd parameter values for application in 

ungauged catchments. MODSIM 2005 - International Congress on Modelling and Simulation: 

Advances and Applications for Management and Decision Making, Proceedings, 2883–2889. 

Doherty, J. (1994). PEST - Model Independent Parameter Estimation. Watermark Numerical 

Computing. 

Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport 

models. Environmental Modelling and Software, 18(8–9), 761–799. https://doi.org/10.1016/S1364-

8152(03)00078-1 

Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., & Veith, T. (2008). Model evaluation 

guidelines for systematic quantification of accuracy in watershed simulations. 39(3), 227–234. 

https://doi.org/10.1234/590 

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and 

momentum in deep learning. 30th International Conference on Machine Learning, 8609–8613. 

https://doi.org/10.1109/ICASSP.2013.6639346 

van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super Learner. Statistical Applications 

in Genetics and Molecular Biology, 6(1). https://doi.org/https://doi.org/10.2202/1544-6115.1309 

Wang, B., Hipsey, M. R., & Oldham, C. (2019). The prediction of daily surface water nutrient 

concentrations using a hybrid machine learning framework. Under Review. 

Wijesiri, B., Egodawatta, P., McGree, J., & Goonetilleke, A. (2015). Process variability of pollutant 

build-up on urban road surfaces. Science of the Total Environment, 518–519, 434–440. 

https://doi.org/10.1016/j.scitotenv.2015.03.014 

Willems, P., Mora, D., Vansteenkiste, T., Taye, M. T., & Van Steenbergen, N. (2014). Parsimonious 

rainfall-runoff model construction supported by time series processing and validation of hydrological 

extremes - Part 2: Intercomparison of models and calibration approaches. Journal of Hydrology, 510, 

591–609. https://doi.org/10.1016/j.jhydrol.2014.01.028 



Addressing uncertainty in catchment models using machine learning techniques 53 

References  
 

   
 

Xu, T., Valocchi, A. J., Choi, J., & Amir, E. (2012). Improving groundwater flow model prediction using 

complementary data-driven models. XIX International Conference on Computational Methods in 

Water Resources, Univ. of Ill., Urbana-Champaign, Ill, October 2015, 1–8. 

Yu, B., & Zhu, Z. (2015). A comparative assessment of AWBM and SimHyd for forested watersheds 

A comparative assessment of AWBM and SimHyd for forested watersheds. 6667. 

https://doi.org/10.1080/02626667.2014.961924 

 

 



Addressing uncertainty in catchment models using machine learning techniques A-1 

Analysis of observed data  
 

   
 

Appendix A Analysis of observed data 

 

 

Figure A-1 Exceedance probability of gauged flow data – 143107 
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Figure A-2 Scatter plot of total suspended solids as a function of flow - 143107 

 

 

Figure A-3 Scatter plot of suspended total phosphorus as a function of flow - 143107 
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Figure A-4 Scatter plot of total phosphorus as a function of flow – 143107 

 

 

Figure A-5 Scatter plot of filterable reactive phosphorus as a function of flow – 143107 
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Figure A-6 Scatter plot of dissolved organic phosphorus as a function of flow – 143107  

 

 

Figure A-7 Scatter plot of suspended total nitrogen as a function of flow - 143107 
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Figure A-8 Scatter plot of total nitrogen as a function of flow - 143107 

 

 

Figure A-9 Scatter plot of organic nitrogen as a function of flow - 143107 

 



Addressing uncertainty in catchment models using machine learning techniques A-6 

Analysis of observed data  
 

   
 

 

Figure A-10 Scatter plot of ammonia as a function of flow - 143107 

 

 

Figure A-11 Scatter plot of dissolved organic nitrogen as a function of flow – 143107 
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Figure A-12 Distribution of observations as a function of flow – 143107 

 

 

Figure A-13 Distribution of observations with month – 143107  
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Figure A-14 Distribution of observations with time of day – 143107 
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