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Executive Summary 
Water and solute transport are the pivotal processes in the MEDLI model. A recent review of MEDLI 
suggested that the modelling of these processes needed to be examined given advances in soil 
physics since MEDLI was developed. This report presents a review and recommendations for how 
water and solute transport could be revised in MEDLI. 

The water transport is broken down into infiltration, drainage, and evapotranspiration. The Green and 
Ampt (GA), linear soil and Philip two-term infiltration models are considered for infiltration. The GA 
model has received considerable development recently and this was considered to be the best model 
if the present Curve Number (CN) infiltration model was to be replaced. This model assumes that 
water is ponded on the soil surface during infiltration but can be adapted using the time-to-ponding 
concept to include mixed (flux controlled, and concentration controlled) surface boundary conditions. 
In addition, it can be adapted for non-uniform initial conditions and layered soils. The equations for all 
of these adaptions are presented in this report (Appendix 1). The time step in MEDLI of 1 day will 
have to be reduced when infiltration is occurring to use the GA model. Methods are available for 
disaggregation of daily rainfall into duration and intensity. There is a need for further investigation 
comparing the GA and CN models before the infiltration model in MEDLI is changed. 

The drainage method used in the present MEDLI and cascading box models is shown to be 
dependent on the time step of the model. Two alternative drainage models, one, the Sisson et al. 
(1980) model, based on gravitational drainage and the Youngs (1960) model based on a shallow 
water table are presented and reviewed. Sites where shallow water tables are present are unlikely to 
be considered for wastewater irrigation and hence modelled in MEDLI. Thus, the Sisson model has 
been suggested as a drainage model that could be adopted in MEDLI. Developments of this model for 
non-uniform initial conditions and layered soils are presented in Appendix 3. The evapotranspiration 
and drainage are convolved, so the order that the processes are calculated will have an effect mainly 
on drainage. 

Root water uptake was considered with transpiration and is based on a recent review. The Feddes 
model for determining the actual transpiration compared with the potential transpiration is considered. 
This is a bent stick model and has two zones where the actual transpiration will differ from potential, 
one near saturation where aeration limits transpiration and one when the soil is drier than a 
predetermined value and transpiration is again limited. A weighting function for water extraction from 
depth is developed from published information. A simple method similar to that presently in MEDLI but 
using a weighting function is also presented. This latter method could be easily incorporated into 
MEDLI and may be a first step in any modifications of the transpiration function.   Soil evaporation is 
reviewed, and the method presented for stage potential evaporation is similar to that already used in 
MEDLI. However, the plant cover function of Sutanto et al. (2012) presented here would give a lower 
potential evaporation rate than the model used in MEDLI; further investigation using data is 
suggested. A crop residual cover function is also presented, and this could and probably should be 
included in MEDLI. 

Solute transport is reviewed with both convective dispersion equation (CDE) and transfer function 
(TF) models discussed. The simple piston flow model, which is what is presently used in MEDLI, is 
introduced and an adaption using a velocity distribution and streamtubes is used to show how this 
could be used to develop a model that gives more realistic solute distributions. The CDE model is too 
complicated and computationally intensive for MEDLI, but the introduction of the mobile/immobile 
concept is the connection between this and the TF models. The simple method suggested by Scotter 
and Ross (1994) to determine the mobile pore space region when used with piston flow model would 
result in the Corwin et al. (1991) bypass model and this could be easily used to provide more realistic 
solute transport in the MEDLI model without extensive modification.  

The Burns equation is another simple model that could be adapted to MEDLI by treating each 
wastewater irrigation as a separate event and using the super positioning principle to combine these 
together. The problem with this method is it does not allow for plant uptake and gains and losses of 
solutes from mineralisation/immobilisation. However, it may be possible to do this with a time-based 
function, but this would have to be investigated further. The Burns equation would be a particularly 
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effective way of determining the potential leaching of solute out of the soil to deep drainage even if 
this was an overestimate due to plant uptake and other gains and losses not being accounted for. 

This report and the accompanying spreadsheet provide options for the further development of MEDLI. 
The report also indicates where further investigation is required before any modifications to MEDLI. 

Implications of the issues identified in this report are summarised and provided in Table 1. 
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Table 1. Strategic overview of the issues and implications raised by this review.  (From p.66) 

Model 
Process 

Issue(s) identified Current handling Proposed 
alternative(s) 

Implications Degree of difficulty Importance  Recommendation 

Infiltration/ 
Runoff 
quantity  

Curve number (CN) – 
Dryland only, not tested 
under irrigation. 

 

Datasets underlying model 
testing limited to heavy 
textured soils. 

 

 

CN used as a pragmatic 
solution in most daily 
time-step hydrological 
models 

Green & Ampt (G&A) 
improved with better 
approach to calculating 
time to ponding, be 
considered to replace 
CN.  

 

 

 

Can’t be adopted 
immediately into MEDLI. 
Need to compare the 
improved GA model with 
the CN model before the 
infiltration model in MEDLI 
is changed.  

Proposed G&A model will 
require the rainfall input to 
be at a time step of less 
than 1 day. and also 
requires additional 
parameters for each soil 
horizon: 

• Sub-daily rainfall 
data 

• Lambda – defines 
relationship between 
water content and 
matric potential. 

• Sorptivity – a 
measure of the how 
rapidly a dry soil is 
wetted due to 
capillarity only. 

• Air-entry matric 
potential 

 

Currently high, as limited 
resources to adapt the 
model; Limited 
availability of datasets 
(with the exception of 
sub-daily rainfall for 
many areas), Limited in-
house soil physics 
expertise 

Infiltration is a key 
factor in 
determining deep 
drainage and 
solute transport 
and if incorrectly 
handled, will have 
significant 
implications reef 
models. 

 

Investigate need and 
develop a detailed case 
for dedicated 
resource(s) to: 

Adapt G&A model to 
non-uniform soils and to 
develop datasets for 
new parameters using 
pedo-transfer functions 
(PTFs) where possible 
which will need to 
involve both field studies 
and “mining” of the soil 
physics literature. 
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Model 
Process 

Issue(s) identified Current handling Proposed 
alternative(s) 

Implications Degree of difficulty Importance  Recommendation 

Deep drainage The prediction of drainage 
in the soil by MEDLI and 
other cascading box 
models is dependent on 
the thickness of the soil 
layers chosen and time 
step used in the model. 

The draining profile shape 
is also unrealistic. 

Hence, daily cascading 
box models poorly 
represent actual drainage. 

Also, the order of 
calculation of the drainage 
and evaporation process 
can affect the drainage if 
they are implemented 
sequentially 

Datasets underlying model 
testing limited to heavy 
textured soils – possibly 
under rain-fed conditions. 

Cascading bucket using 
daily time-step where 
the drainage factor 
(proportion of drainable 
water draining) is 
calculated using an 
exponential function 
based on the saturated 
hydraulic conductivity 
and drainable porosity of 
the soil layer.  

As such, the drainage 
factor has no real 
physical meaning.  

Consider using the 
Sisson model, based on 
gravitational drainage 
(must have no shallow 
water tables). 

 

NOTE: shallow water 
tables are unlikely to be 
modelled by MEDLI. 

 

Refer Appendix 3  

Sisson model requires 
additional parameters as it 
is based on the K-𝝷𝝷 
function, but these may be 
able to be estimated from 
known parameters. 

Sisson method assumes 
that at the soil surface, the 
water content reduces to a 
specified value (less than 
DUL) as drainage 
proceeds. A value of 0.83 
x DUL may be suitable, 
but this will need to be 
checked by comparison 
with numerical models 
such as HYDRUS1D. 

Currently high, proposed 
Sisson model not 
currently built or tested. 

 

Limited resources to 
adapt the MEDLI model  

 

Limited availability of 
datasets (with the 
exception of sub-daily 
rainfall for many areas)  

 

Limited in-house soil 
physics expertise 

High  

 

Investigate need and 
develop a detailed case 
for dedicated 
resource(s) to: 

• Adapt Sisson 
model to non-
uniform soils  

• Develop datasets 
for new parameters 
using pedo-transfer 
functions (PTFs) - 
methods to predict 
the hydraulic 
properties of soils 
from simpler soil 
measurements - 
where possible 
which will need to 
involve field 
studies. 

 

Root water 
uptake 

MEDLI transpiration 
algorithm does 
progressively reduce root 
water uptake as plant 
available soil water 
approaches zero. 

Partitioning of potential 
transpiration favours 
wetter layers and 
excludes layers with no 
plant available water. 
The upper two soil 
layers are also weighted 
more heavily as these 
layers will contain more 
roots. The actual 
transpiration from each 
layer is then limited to 
the amount of plant 
available water stored in 
that layer.  

Feddes model uses a 
bent stick approach with 
two zones–  

• for near saturation/ 
aeration limitation.  

• for when soil dried 
below a specified 
limit.  

Relatively easy to adopt 
into MEDLI. Will need 
extra parameter for the 
soil lower water content 
threshold. 

 

Note: Transpiration and 
soil evaporation will affect 
drainage predictions. 
Order of calculations 
important 

Low. Improves 
transpiration 
modelling in 
schemes where 
irrigation is well 
below irrigation 
demand. 

 

Include in current 
planning for model 
development with 
current resources  
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Model 
Process 

Issue(s) identified Current handling Proposed 
alternative(s) 

Implications Degree of difficulty Importance  Recommendation 

Soil 
evaporation 
for soils with 
dead cover 
(crop 
residues) 

MEDLI poorly models the 
impact of crop residual 
cover on soil evaporation.  

 

 

 

The fraction of soil 
surface with any cover 
(transpiring or non-
transpiring) is deemed to 
show zero soil 
evaporation. 

The residual cover 
function from 
HOWLEAKY? should be 
considered/adopted to 
account for the mass of 
residual dead plant 
material reducing soil 
evaporation. 

Relatively easy to adopt 
into MEDLI. No new 
parameters would be 
required. A “Desorptivity” 
parameter is equivalent to 
“CONA” used in MEDLI.  

Improved soil evaporation 
modelling in schemes 
where residual cover 
occurs following crop 
removal or as plant 
canopy regrows following 
harvest.  

Moderate as some 
further investigation into 
the HOWLEAKY 
residual cover function is 
required.  

However, adoption into 
the MEDLI model 
appears straight forward 

Moderate to high 

Transpiration and 
soil evaporation 
will affect irrigation 
demand and 
drainage 
predictions. Order 
of calculations 
important 

Consider including in 
current planning for 
model development 
subject to availability of 
resources  

Soil 
evaporation 
from bare soil 

MEDLI does not model re-
wetting of soil surface 
towards the second soil 
moisture content in the 
absence of rain or 
evaporation, potentially 
underestimating soil 
evaporation from bare 
soils. 

Ritchie (1972) 
evaporation algorithms 
are used to estimate soil 
evaporation which is 
then subtracted from the 
water content of the top 
two soil layers. Upward 
flux is ignored. 

Force-restore method 
proposed by Cook et al. 
(2008). 

As bare soil scenario 
would be rarely modelled 
within MEDLI, the extra 
complication may be 
unwarranted. 

Moderate – need for 
investigation 

Low Consider including in 
current planning for 
model development 
subject to availability of 
resources 

Plant cover 
factor 

Sutanto et al. 2012 
calculates a plant cover 
factor from LAI uses Beers 
law with an extinction 
coefficient of -0.463 while 
MEDLI uses and extinction 
coefficient of -0.65. 

In the pasture model, 
MEDLI uses a sine 
curve function of plant 
transpiring cover over 
thermal time. The 
transpiring cover, 
expressed as the 
proportion of soil area is 
then used to calculate 
potential transpiration. 

The crop module taken 
from EPIC uses LAI 
which is converted to 
transpiring cover using 
Beers law with an 
extinction coefficient of -
0.65. 

Plant cover function of 
Sutanto et al. (2012) 
(used in HYDRUS1D) 

This would apply to the 
crop module.  

 

 

 

Moderate as some 
further investigation into 
the Sutanto model is 
required.   

Adoption into the MEDLI 
model appears straight 
forward. 

Need further 
investigation of LAI on 
evaporation with 
measured data. 

 

Transpiration and 
soil evaporation 
will affect irrigation 
demand and 
drainage 
predictions. Order 
of calculations 
important  

Consider including in 
current planning for 
model development 
subject to availability of 
resources 
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Model 
Process 

Issue(s) identified Current handling Proposed 
alternative(s) 

Implications Degree of difficulty Importance  Recommendation 

Solute 
Transport 

Simple piston-flow model 
assumes all the existing 
soil water with its 
dissolved solutes is 
displaced by the infiltrating 
solution, hence 
overestimating leaching. 

For a model such as 
MEDLI, the development 
of the actual shape of the 
solute distribution may not 
be as important as 
calculating where the 
solute front is. 

Simple piston-flow 
model  

Adopt Corwin et al. 
bypass model (uses 
mobile/ immobile 
concept) + Scotter & 
Ross (1994) to 
determine 
mobile/immobile regions 
for a more realistic 
solute transport model.  

The solute would be 
transported in the mobile 
pore space during 
drainage. Adopt the split 
suggested by Corwin et 
al. (1991) and have only 
50% of the solute mass 
in a box available for 
transport. 

And/or 

The Burns equation 
could be incorporated 
into MEDLI using the 
leaching fraction 
algorithms to give the 
fraction of solute mass 
leaching out of the 
bottom boundary of the 
soil model domain to 
deep drainage. 

 

. 

This would require only a 
minimal recoding of the 
MEDLI model and the 
computational 
methodology is well set 
out by Corwin et al. 
(1991). 

 

Extra parameters include 
a fixed bypass flow 
coefficient for the soil. 

 

 

 

 

 

The Burns equation works 
on cumulative drainage 
and either a uniform profile 
or pulse input. Unlike the 
Corwin et al. model, It 
would be more difficult to 
incorporate into MEDLI’s 
bucket model approach.  

The Burns equation also 
assumes that the solute is 
conserved within the soil 
(does not allow for plant 
uptake and gains and 
losses of solutes from 
mineralisation/ 
immobilisation). However, 
it may be possible to do 
this with a time-based 
function, but this would 
have to be investigated 
further 

Moderate as the Corwin 
model is well described 
and the Burns equation 
is also easily 
implemented. 

 

 

 

 

 

 

 

Equations need 
explanation for 
implementation. 

 

The Burns equation 
approach only requires 
knowledge of one soil 
factor (the water content 
of the mobile region). 

High Investigate need and 
develop a detailed case 
for dedicated 
resource(s) to: 

Develop solute transport 
model and to develop 
datasets for new 
parameters using PTFs 
where possible which 
will need to involve field 
studies. 
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Model 
Process 

Issue(s) identified Current handling Proposed 
alternative(s) 

Implications Degree of difficulty Importance  Recommendation 

Runoff 
Quality* 

Need to estimate 
dissolved P concentration 
and hence P loss in runoff 
from effluent irrigation 
areas. 

No attempt to model 
quality of runoff water. 
MEDLI will indicate any 
effluent-sourced P lost in 
runoff if the runoff is 
likely to contain effluent. 

A relationship between 
soil solution P and soil 
Colwell-P and 
Phosphorus buffer index 
could be used to 
estimate runoff P 
concentration 

Cannot be adopted 
immediately into MEDLI. 

 

This will need further 
development and testing 
against field data 

Currently high, due to 
requirement of 
investigations and due 
to limited resources.  

 

 

High.  

P loss in runoff is 
of greater concern 
than P leaching 
losses in most 
soils (with the 
exception of sandy 
soils) 

Investigate need and 
develop a detailed case 
for dedicated 
resource(s) to: 

Field trials/data needed; 
Soil Chemist input 
needed 

Denitrification* No denitrification model 
has been validated against 
datasets. 

Models assume a potential 
denitrification rate for the 
soil (depends on soil pH 
etc) which can then be 
scaled back within the 
model according to soil 
water content (> DUL) and 
temperature and soil 
carbon. This potential 
value needs validation. 

 

 

A first order kinetic 
equation between 
nitrate-N and 
denitrification per mass 
soil per day is assumed 
which is suitable for high 
strength effluents. The 
potential denitrification 
rate is defined by the 
user for the soil but uses 
10%/day as default. This 
is scaled back according 
to soil water content (> 
DUL) and temperature 
and presence of labile 
soil carbon. 

Approaches used in 
APSIM and DairyMod 
and others need to be 
reviewed in the light of 
data. 

 

 

 

 

 

 

 

Cannot be adopted 
immediately into MEDLI. 

 

 

 

 

 

 

 

 

 

Limited availability of 
datasets. 

Uncertainty of 
predictions from such an 
approach could be high 
(e.g., see Cook et al 
2019; Wallach et al 
1990). 

 

High 

Denitrification is a 
poorly estimated in 
the nitrogen mass 
balance. It 
represents a 
possible legitimate 
sink for nitrogen 
during effluent 
irrigation. 

Investigate need and 
develop a detailed case 
for dedicated 
resource(s) to: 

Field trials/data needed 
(see Beggs et al. 2011 
for a good review and 
method); Soil Chemist 
input needed 

Soil organic 
carbon 
specification 

The current MEDLI suite 
of lab analysis only offers 
to measure OC in topsoil 
layer. 

 The need to specify the 
full thickness of organic 
carbon layer in the soil 
rather than just use the 
default value could be 
made more explicit? 

    

* From QWMN MEDLI Science Review Report by Phil Moody. 
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1. Background 
MEDLI is a software tool that is used to design the application of wastewater by irrigation onto land for 
treatment by soil and plant processes. A recent review of the MEDLI model (Gardner, 2021) 
suggested that soil hydrology aspects of this model should be reviewed with regard to the underlying 
physics of water and solute transport. In particular, processes that should be looked at are the 
infiltration, redistribution and deep drainage of water and solutes in the soil profile. 

2. Water transport 
Water movement in soil at the pore scale is governed by the Navier-Stokes equation (Narsilio et al. 
2009) but trying to use this in any practical application is difficult as we cannot measure all the 
properties and parameters required in any practical applications. This means that we have to use 
approximate macroscopic models. At the next scale up, we find that Darcy’s law can describe the flow 
of water from centimetres to tens of metres. This “phenomenological law” was discovered by Darcy 
when considering water flow through sand filters. He found that the flow rate through the sand filter 
was proportional to the difference in hydraulic head. The proportionality constant is now called the 
saturated hydraulic conductivity (Ks (m s-1)) and the law has the form (for vertical flow): 

w s
dhJ K
dz

=        (1) 

where 

Jw is the rate of water flow (m s-1) 

h is the hydraulic head (m) 

z is the depth of the media (m). 

Figure 1. Simple diagram of a column of soil with a head of water on the surface and steady water flow Jw 
through it. If h is varied and Jw is plotted versus dh/dz = (h+L)/L, the slope of the resulting straight line gives the 
value of Ks, which in this case is 20 mm/h. 

Jw 

Jw 

L 

h 
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A schematic of steady state water flow through a column of soil is shown in Figure 1. This is similar to 
Darcy’s sand beds. 

When water flow through a media is not steady, we need to consider the law of conservation of mass. 
In Figure 2 a steady horizontal flux density, Jin (m s-1), occurs into a small volume of soil of length  ∆x 
(m) and initially at a water content of θ at time t, and steady flux density out, Jout, over a small 
increment of time ∆t (s). This will result in a change of water content in the volume of soil to θ+∆θ at 
the end of ∆t. By considering conservation of mass, the flow difference (Jin – Jout) ∆t = ∆θ∆x.  As the 
space and time steps are made smaller and smaller, we get the conservation equation: 

 

dJ d
dx dt

θ
=        (2) 

 

Figure 2. Schematic of horizontal water flow through an element of soil to describe the mass conservation 
concept. 

Combining equations (1) and (2) results in an equation for water transport through soil which was first 
devised by Richardson (Richardson, 1922) and independently rediscovered by Richards (Richards, 
1931). This can be written for horizontal flow as (Warrick, 2003): 

 

( ) ( )k D
t x x x x
θ ψ θθ θ∂ ∂ ∂ ∂ ∂   = =   ∂ ∂ ∂ ∂ ∂   

      (3) 

where 

θ is the volumetric water content (m3 m-3) 

t is time (s) 

x is the horizontal distance (m) 

ψ is the matric potential (potential energy per unit weight of water) (m) 

k is the hydraulic conductivity (which is a strong function of θ ) (m s-1) 

D is the soil water diffusivity given by 𝐷𝐷(𝜃𝜃) = 𝑘𝑘(𝜃𝜃) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (m2 s-1) 

Equation (3) describes the change in water content with time at any distance, x, due to the flux of 
water caused by the matric potential gradient ( / xψ∂ ∂ ) mediated by the hydraulic conductivity or 
water content gradient mediated by the diffusivity. The use of diffusivity in Eqn (3) results in an 
equation equivalent to Fick’s Law, which states that the rate of transfer of water content in the 
direction x per unit time is due to the water content gradient ( / xθ∂ ∂ ), and a proportional parameter, 
the diffusivity. This makes Eqn (3) into a form that is equivalent to heat flow in solids. This allows the 

(θ,t)  (θ+∆θ,t+∆t) Jin Jout 

∆x 
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many mathematical solutions that have been developed for heat flow to be adapted to describe water 
flow in soil.  

To make Eqn (3) useful in a practical sense we need to provide initial and boundary conditions, so 
that this can be integrated to give the water content, θ, distributed in space (x) and time (t). It can also 
be solved numerically using models such as HYDRUS (Simunek, 2008) and SWIM (Verburg et al., 
1996) but these require considerable amounts of soil hydraulic information, are time consuming, and 
require considerable computing power. Physicists have been exploring analytical solutions over 4 to 5 
decades (Philip, Parlange, Gardner, Youngs, White, Knight, Raats, Clothier etc.) because the 
equation is analogous to heat transport in solids for which there are textbooks with analytical solutions 
(Carslaw and Jaeger, 1959). 

When vertical flow is considered, a further term to account for the flow due to the unit gravitational 
potential unit gradient ( ( ) /k zθ∂ ∂ ) (s-1) must be added to the right-hand side of Eqn (3) and the 
spatial coordinate changed from x to z (i.e. depth (m)). The vertical flow equation with a sink term (Sp) 
added for root water uptake by plants, is given below in Eqn (4). 

Infiltration of water into soil was one of the first processes modelled, using the model of Green and 
Ampt (1911). This was developed before the discovery of Eqn (3). Since that time there have been 
major advances in modelling of infiltration, initially in the 1950s by Philip (summarised in Philip (1969)) 
and numerous other authors, and then a further advance in the 1970s by Parlange (1971) and Philip 
and Knight (1974). These models and the approaches taken will be discussed below and evaluated 
as to how MEDLI might be modified to incorporate some of the physical understanding gained from 
these studies. 

Drainage is the other aspect of the water transport that will be considered in this report. This process 
commences following the infiltration of water into a soil profile and redistributes the water within the 
soil. Of particular interest to the MEDLI users is the water that passes beyond a certain depth and is 
then “lost” eventually to the groundwater. This certain depth is usually the depth below which soil 
water cannot be extracted by plant roots. 

This extraction of water by plant roots is not considered in Eqn (3) and requires a sink term (Sp (s-1)) 
to be added to Eqn (3) and the spatial coordinate changed to vertical giving: 

 

 
( )( ) ( , )p

kk S t z
t z z z
θ ψ θθ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ 

    (4) 

 

This sink varies both in time, due the potential evapotranspiration (PET) and depth via a combination 
of soil matric potential and root length density. Thus, when we come to consider the drainage, we also 
need to consider how the sink term will affect this, as water uptake and redistribution can be 
simultaneous processes. Models for root water uptake at all scales have been reviewed by Feddes 
and Raats (2004). 

In this report, we will divide the models on water transport into the following processes: infiltration, 
drainage, evaporation and transpiration. Most of these solutions have been developed for discrete 
events i.e., infiltration into soils with uniform properties with depth and uniform initial water content 
with depth, or drainage from an initially saturated soil profile. These have been very useful in 
advancing understanding of the driving forces and development of sound theory upon which to base 
predictions of soil water transport processes. But for more practical field situations where both the 
flow conditions and soil properties vary in space and time, numerical models have been developed 
that can cope with these variable boundary conditions. Such models use very fine space and time 
steps such that they closely approximate Eqn (4). Models such as SWIM (Verburg et al. 1996) and 
HYDRUS (Simunek et al. 2008) use this approach.  

There are also models that use much simpler approximations of the space and time scales, often with 
fixed time steps of one day. These models usually have simplifications, such as that water only moves 
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downward in the soil and only when the soil is wetter than a certain value (field capacity or drained 
upper limit). Numerous examples of these water balance models such as SoilWat (Probert et al., 
1988), Perfect (Littleboy et al., 1989), and EPIC (Steiner et al., 1987) exist. MEDLI is a model that is 
also based on this simplified approach. 

These work by dividing the time and space into small increments and move the water in the space by 
transferring water according to rules based on Eqn (4), but often with considerable simplifications with 
fixed time steps. 

In this report we will consider how understanding about water transport could be used to enhance 
some of the approximations used in MEDLI. These will need to be adapted so that they can be used 
in an approximate framework like MEDLI. They will also need to be well tested before inclusion in 
MEDLI, but this is beyond the scope of this report. 

2.1. Infiltration 
Infiltration is an important process as it determines how water from the atmosphere enters the 
terrestrial ecosystem to provide water for plant growth, runoff, and drainage to groundwater, which is 
a source of water for freshwater bodies such as rivers and lakes. It is a process of fundamental 
importance and has been researched in depth over the years. 

Infiltration has a long history in soil physics with the earliest model being that of Green and Ampt (GA) 
(1911). This model has had a resurgence of interest following a publication by Mein and Larson 
(1973) who applied it to rainfall conditions rather than just surface ponded conditions. The 
fundamental features of the GA model are: the soil is divided into two sections by a sharp wetting 
front, which is defined by a fixed matric potential; above this wetting front the soil is saturated and 
below the wetting front the soil is at the initial water content (Figure 3). As originally written, the 
equation results in an implicit equation (see Eqn (7) below), which can only be solved using iterative 
methods such as Newton-Raphson (Ralston, 1965). However, this can be time consuming, so various 
authors have developed explicit equations that use different functions to overcome the implicit nature 
of the original equation. This is explained in more detail below in Section 2.1.3. 

 
Figure 3.Schematic of Green and Ampt infiltration behaviour under ponded surface conditions with a head of 
water of H. The left-hand panel indicates infiltration into a dry soil with a water content of θdry and hydraulic 
conductivity (Kdry ≈ 0). The wetting front is represented by the line has reached a depth of zf and the wetting front 
potential is ψf. Behind the wetting from the water content is θdwet and hydraulic conductivity (Kwet) In the right-hand 
panel this is idealised as a square wave (or delta function) as is assumed in the Green and Ampt model. 

Subsequently, Philip published extensively on the topic in the 1950s and 60s and summarised his 
understanding of infiltration in his landmark publication (Philip, 1969). The 1950s work resulted in the 
two-term algebraic infiltration equation (Philip, 1957), which is now commonly referred to as the Philip 
equation. This work also introduced the concept of sorptivity. A definition of sorptivity based on 
Philips’ work is given by Minasny and Cook (2011). Sorptivity is what drives the infiltration of water 
into dry soil due to the capillarity. For horizontal infiltration, the cumulative infiltration, when plotted 
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against the square root of time, gives a straight line with the slope being the sorptivity value. This 
scaling with the square root of time occurs because as the wetting proceeds, the wetting front gets 
further and further away from the intake surface, and so the matric potential gradient at the intake 
surface gets less and less, such that the driving force diminishes, and the infiltration rate inexorably 
decreases. Typical infiltration curves with only sorptivity acting are shown in Figure 4. 

 
Figure 4. Calculated infiltration (I) into horizontal columns of sand, loam and clay with a) time (t) and b) the 
square root of time (t-1/2). The slope of the t-1/2 graphs is the Sorptivity value of the soil. Note that S also varies 
with antecedent soil moisture content. 

When vertical infiltration occurs, the sorptivity dominates the initial rate of water intake into the soil, 
but as the wetting front moves deeper into the soil, the unit gravitational potential gradient becomes 
more dominant, and this results in a deviation from the square root of time behaviour towards a 
constant value of slope with time. At large times, the infiltration rate is equal to the saturated hydraulic 
conductivity. This is shown for a sand in Figure 5 where the infiltration rate (dI/dt) tends towards a 
straight line as elapsed time increases.  The same data plotted against the square root of time shows 
an upward curvature. The insert in Figure 5b shows a straight line with the square root of time at 
small, elapsed times when sorptivity still dominates the flow process. 
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Figure 5. Cumulative infiltration (I) into a sand a) with time (t), and b) with square root of time (t1/2). The insert is 
for time less than 36 s. 

This led to the Philip two-term infiltration equation (Philip, 1957) but this was only suitable for ponded 
infiltration, and then only for early to moderate elapsed infiltration times. Philip (1987) published an 
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extension to this model that allowed it to be applied to longer times by joining a long-time steady-state 
flow model to it. This will be described in more detail below in Section 2.1.3.3. 

Philip (1969) showed that the Green and Ampt model is a delta function solution. This means that at a 
specified water content value (in this case the saturated water content) the value of the diffusivity 
shows very small values with all water content except at saturation, where it shows a very large value. 
This behaviour can be described by a Dirac delta function. The integral of the diffusivity with water 
content for a delta function is 1. For the Green and Ampt model, the sharp wetting front is an example 
of delta function behaviour. Philip (1969) also presented solutions for a linearised diffusivity where its 
value is constant over the water content range of interest. These two types of solutions provide 
bounds to the likely soil water infiltration behaviour.  However, the linearized solution is poor at 
estimating the water content distribution due to the assumption of constant diffusivity. 

A summary of solutions up to 1969 is given in Philip (1969). In the 1970s, the flux concentration idea 
was introduced by Parlange (1971) and improved by Philip and Knight (Knight and Philip, 1973; Philip 
and Knight, 1974). White and co-workers (White and Sully 1987; Broadbridge et al. 1988; 
Broadbridge and White 1987; Broadbridge and White 1988; White and Broadbridge 1988) then used 
these methods to reduce the number of parameters down to one factor they called C, which ranges 
from 1 for Green and Ampt soils, to ∞ for soils based on Burger’s equation (Raats, 2001). These 
solutions have been used to develop numerical models that solve Eqn (4) (Dawes and Short, 1993; 
Short et al. 1995). The time to ponding concept developed from these methods is particularly useful 
and will be introduced in Section 2.1.4 below. 

During infiltration, runoff can occur due to one of two possible limits being reached. The first of these 
limits is the infiltration rate limit. During infiltration, the potential infiltration rate (i (m s-1)) decreases 
with time towards the saturated hydraulic conductivity of the soil. If the surface flux density (R (m s-1)) 
(either rainfall rate or irrigation rate) is greater than the potential infiltration rate then water will 
accumulate on the soil surface after some time, tp (the time to ponding), and the excess water will 
runoff. This process is illustrated in Figure 6a. 

 
Figure 6. Illustration of a) potential infiltration and rainfall rate showing when ponding would occur and runoff rate 
(grey area) and b) example from White and Broadbridge (1988) of the surface matric potential during infiltration at 
two different rainfall rates. 

An example from White and Broadbridge (1988) of the change in surface matric potential with time 
during constant rainfall shows that the time at which ponding occurs increases from about 0.3 hr to 
0.7 hr as the rainfall rate decreased from 15 to 10 mm hr-1 (Figure 6b). 

The second way runoff can be generated is due to the storage limit of the soil being exceeded. This 
can occur if there is a shallow water table or a shallow layer that impedes the water flow through the 
soil. At the start of infiltration for such a soil, the amount of storage capacity (Ic (m)) is the difference 
between initial water content of the soil and the saturated water content summed over the depth of 
soil to the water table or the impeding layer. If the cumulative infiltration at some time (I(t*) (m)) equals 
Ic then no further infiltration into the soil can occur, and all further application of water to the soil 
surface will result in this water becoming runoff. This is often termed saturation overland flow in 
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hydrology. The example in Figure 7 (from Salvucci and Entekhabi 1995) is for ponded infiltration but 
shows how the soil water storage is filled up as the wetting front advances into the soil until all the 
storage has been filled.  

 
Figure 7. An example taken from Salvucci and Entekhabi (1995, Figure 3) of infiltration into a silty loam soil with a 
water table at a depth of 150 cm. There is saturated soil to approximately 100 cm depth due to capillary rise from 
the water table. This shows the soil progressively wetting to saturation (soil saturation = 1) and no further 
infiltration can occur sometime after 369.8 minutes, when the wetting front joins up with the saturated soil. 

In both these cases, the flow regime into the soil will change from being flux controlled - the rate of 
infiltration is controlled by the flux to the soil surface, to being concentration controlled as the surface 
water content reaches saturation. Analytical solutions have been developed for flux-controlled flow 
regimes (absorption solutions) and for concentration-controlled flow regimes (ponded solutions). 
However, solutions for a mixed boundary condition where the surface boundary condition changes 
from flux to concentration controlled are problematic, and as will be discussed below, the time-
compression-analysis is one way to allow concentration-controlled solutions to be used for mixed 
boundary conditions. 

2.1.1. Macro-pores, Layering and Uneven Wetting 

Analytical models for infiltration assume that water flows evenly through the soil, has a well-defined 
wetting front, and the surface boundary is uniform (i.e., does not vary with space). When flux is 
occurring, and the surface soil is unsaturated, these assumptions are generally true (Clothier and 
Heiler 1983). However, when the soil surface undergoes ponding, water can enter macropores (such 
as cracks and wormholes) and the distribution can vary with a proportion of the water moving to 
greater depth than the infiltration model(s) would otherwise predict (Germann and Beven 1985; 
Germann and Beven 1986). These macropores do not have an effect on the distribution of water in 
the soil when the soil surface is less than saturation (Clothier and Heiler 1983). However, when water 
ponds on the surface, this “free” water (potential greater than zero) can enter the macropores and 
flow down them as well as laterally into the soil (Figure 8). This results in an uneven wetting front and 
can result in water and solutes being transferred beyond the rooting depth of plants. This “bypass 
flow” is undesirable as it can result in greater nutrient losses from the root zone to the groundwater 
(Prendergast, 1995).  
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Figure 8. Schematic of effect of macropores of water flow in soil during infiltration. The left-hand panel shows 
infiltration with the rainfall rate, R, less than the potential infiltration rate, I, and no flow through the macropore. 
The right-hand panel shows infiltration with R > I and water ponded on the soil surface and entering the 
macropore which results in an uneven wetting front.  

When ponding occurs on the surface, the distribution in ponded depth due to surface micro-
topography can also result in very uneven water distribution in the soil (Cook 1983). These effects can 
occur when applying wastewater with sprinkler irrigation, and hence surface ponding should be 
avoided if possible (Cook 1988). 

Layering in the soil can also result in uneven wetting. When water moving through a coarse textured 
soil layer meets the boundary of a deeper soil layer of finer texture with a saturated hydraulic 
conductivity lower than the flux occurring in the coarse textured soil, then ponding can occur at the 
boundary. This can result in water flow into macro-pores and uneven distribution. The opposite can 
also occur when flow through finer textured soil overlays a coarser textured layer and wetting front 
instabilities can occur, which leads to fingering, which is flow occurring down wet fingers separated by 
dry soil (Du et al. 2001; Yao and Hendrickx 2001; Parlange and Hill, 1976). Fine texture over coarse 
texture also results in a transient perched water table that can result in a higher plant available water 
content in the finer soil (Clothier et al., 1977), a technique used in the design of golf greens. 

While these issues need to be considered when planning a wastewater irrigation system, they are of 
second-order importance especially if the irrigation system is designed to avoid ponding. The issues 
of variation in the flow due to larger pores and the distribution of pores will be discussed in more detail 
when considering solute transport in Section 3. 

2.1.2. Scale and Uncertainty 

The issue of scale is of practical concern as soil physics theory and measurement have been based 
at volume scales of cm3 to m3 (Raats, 2001). This limitation is partially due to instrumentation that only 
measures a limited volume of soil in the range of cm3. This is still the case today except for the recent 
development of the cosmic neutron probe (Franz et al. 2012; 2013), which measures water content 
over approximately a 40 ha area to a depth that varies with water content. 

For practical purposes we still use and assume that the Richards equation can be applied at scales of 
greater than tens of m3 although Addiscot (1995) argued that Darcy’s Law was only applicable up to 
soil areas of about 10 m2. However, the Richards equation has really transformed into a transfer-
function model, as the hydraulic conductivity and the water potential gradient will be an ensemble of 
the point scale values.1  

 
1 The ensemble value is the average value we get when we calculate flow at the point scale using 
many (usually thousands) of different values of the soil properties. To do this, usually Markov chain 
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This means that when using point scale models (discussed below), the use of a single valued average 
implies that 50% of the area is likely to have physical parameter values greater than, and 50% less 
than the flux, and hence water content distribution. This then raises the question: is this good enough 
for predictive purposes and what probability should be considered appropriate?  

When using point scale models for wastewater, we contend their acceptability depends on the 
environmental hazard created by substances in the wastewater. For relatively benign substances, the 
mean probability of runoff and drainage may be acceptable. But for hazardous wastes, a much lower 
probability should be considered.  

2.1.3. Specific Infiltration Models 

2.1.3.1 Green and Ampt 

The Green and Ampt infiltration as originally derived for ponded conditions is given by   

 (Bouwer, 1978): 

 

( ) 1
( )

f
s

f

H
i t K

z t
ψ +

= + 
  

      (5) 

where 

i(t) is the infiltration rate (volume per unit area) at time t (m s-1) 

Ks is the saturated hydraulic conductivity (m s-1) 

H is the ponded head of water on the soil surface (m) 

fψ   is the wetting front matric water potential (m) 

zf is the wetting front depth at time t (m) 

These concepts were shown schematically in Figure 3. 

The zf can be replaced in Eqn (5) by the ratio of the cumulative infiltration I(t) (m) and the change in 
water content ∆θ = θwet - θdry to give: 
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      (6) 

 

For constant H, i(t) = dI(t)/dt which leads to the well know implicit equation: 

 

( ) ( )( ) ln 1
( )s f

f

I tI t K t H
H

θ ψ
θ ψ

 
= + ∆ + + 

∆ +  
    (7) 

 

The reason this is called an implicit equation is that I(t) appears in both sides of the equation (7), so a 
simple algebraic solution is not possible and can only be solved using iterative methods. Mein and 
Larson (1973) showed that Eqn (7) could be used to describe infiltration under rainfall by calculating 

 
Monte Carlo (MCME) methods are used (Beven and Freer, 2001), which are computationally 
intensive and time consuming. 
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the elapsed time when ponding occurred on the soil surface. The infiltration of water into a soil where 
ponding occurs during infiltration is shown in Figure 9. 

 

Figure 9. Schematic diagram of water content (θ) increasing with depth as wetting occurs during rainfall. In this 
figure the rainfall rate is such that at time t3 the water content at the soil surface reaches the saturation. This is 
the time to ponding (Tp). After ponding the water content at the surface remains at saturation as the wetting front 
moves down into the soil with saturated soil occurring behind the wetting front.  

Prior to the ponding, the infiltration rate equals the rainfall rate, and after ponding, infiltration is 
described by Eqn (7). Mein and Larson’s seminal publication has led to an increased interest in the 
Green-Ampt (GA) approach for modelling infiltration in hydrology models.  

This has resulted in various authors developing explicit methods that approximate Eqn (7) and 
transform Eqn (7) into an algebraic equation that is amenable to solution. Ali et al. (2016) evaluated 
these methods and found that the explicit solution proposed by Barry et al. (1995, 2005) was the 
solution that was the most accurate comparison with Eqn (7) and is given by: 
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where 

t* is dimensionless time  

A is a dimensionless time parameter  

S is the sorptivity (m s-1/2) and for a GA (delta function) soil is given by (Parlange 1975, Neuman, 
1976): 

 

( )2 2 s fS K Hθ ψ= ∆ +       (9) 

 

The value of the wetting front potential can be obtained from the Brooks and Corey (1964; 1966) 
moisture retention parameters, as described by Gowdish and Munoz-Carpena, (2009): 

 

2 3
1 3f b

λψ ψ
λ

+
=

+
       (10) 

 

where 

ψb is the air entry water potential (m) 

λ is the pore size distribution parameter. 

The value of ψf for most soils falls in the range of -0.10 to -0.5 m.  The relationship between water 
content and matric potential (termed the moisture characteristic) is illustrated in Figure 10, where ψb is 
the soil suction (aka matric potential) when a saturated soil will first start to drain as air enters the soil, 

and λ is the slope of the linear ( )log θ  and ( )log ψ relationship. This relationship is known as the 

Brooks and Corey model and is described in its simplest form as: 
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Figure 10. The soil moisture characteristic of a sandy soil where the log volumetric moisture content (θ) is plotted 
against the matric potential (units of m) using a log scale. The soil suction when the saturated soil first starts to 
drain (the air entry potential or bubbling pressure) and the slope of line define 𝝭𝝭 b and 𝝀𝝀 respectively of the 
Brooks & Corey equation. 

 The infiltration rate is determined using l(t) from Eqn (8) and substituting Eqn (9) into Eqn (6) to give 
(Ali et al., 2016): 
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The depth of the wetting front is then easily calculated as 
( )( )f

I tz t
θ

=
∆

 . 

The GA equations discussed above are for soils uniform in both the water content difference profile 
(∆θ) with depth, and the constant soil hydraulic conductivity with depth. Bouwer (1969) developed 
methods to alleviate these restrictions on the use of the GA method. To use his method, it is easier to 
use the explicit solution (Eqn (7)), and a description of the Bouwer (1969) methodology and a solution 
method for a box model2 like MEDLI is given in Appendix 1.  

 
2 A box model is where the spatial domain is split into boxes of discrete lengths and the flow between 
these boxes for a given time step is described by simplified approximations of the actual flows. The 
difference between water flow into the box and out of the box in the time step allow the change in the 
water content to be calculated. This then gives the new value of the state variable (i.e. water content) 
at the end of the time step. 
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2.1.3.2 Linear Soil 

For describing heat conduction in solids, the diffusivity is usually constant, or approximately constant, 
with temperature. Philip (1966, 1969) used this assumption to develop the linear soil solution for 
infiltration. 

A linear soil is assumed to have a constant diffusivity ( ( )2 2
* / 4D Sπ θ= ∆  ) and a constant slope of 

the K - θ characteristic ( ) / ( ) /wet drydK d K Kκ θ θ θ= = − ∆ for the range of ∆θ. This approximation 

can be used as the conductivity (K) is a function of the water content with a positive slope and 
/d dψ θ  is a function with a negative slope (see Figure 10). 

The cumulative infiltration for ponded conditions is then given by (Philip, 1969): 
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where 

( ) /wet dryK K K θ∆ = − ∆  

erf(x) is the error function 

erfc(x) = 1 – erf(x) is the complimentary error function 

The water content profile can be obtained using (Philip, 1969): 

 

** *
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2 2 2dry

z t z z tz t
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         
   (14) 

 

A comparison of water content profiles at three selected times for the GA and linear soil infiltration 
models are shown in Figure 11. This clearly shows the enhanced dispersion of the water content 
profile predicted for the linear soil. However, neither the GA nor the linear infiltration equations give 
the true water content profiles (z,t), which will lay somewhere between these two extremes.  
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Figure 11. Comparison of water content with depth for ponded infiltration into a clay soil using: a) Green and 
Ampt model, Eqn (8) and b) linear model based on Philips equation, Eqn (14) (soil hydraulic properties were 
taken from Salvucci and Entekhabi (1994) and given in Table A1. 

2.1.3.3 Philip two-term infiltration model 

The Philip two-term algebraic infiltration model (Philip, 1957) is only applicable during the early to 
medium time period of infiltration. This was overcome by coupling a long-time solution infiltration 
equation to the two-term equation (Philip, 1987). This results in a ponded infiltration model that can be 
used for the whole time period, and is given by Cook et al. (2008): 
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   (15) 

 

The value tg, the gravity time, is the time at which gravity becomes the dominant force driving the 
infiltration of the water into the soil.  

The constant 0.36 in Eqn (15) is for a soil with Burger’s equation properties, which is close to the 
properties exhibited by real soils. More information on Burger’s equation is given in Knight (1973). 

This equation does not provide a solution for the water content profile, but a square wave solution 
similar to that of the GA model, which would fit well with the box model spatial discretisation as used 
in the MEDLI model, can be calculated. 

Eqn (15) describes ponded infiltration, and hence is only applicable after ponding occurs for rainfall 
infiltration. The time compression analysis given below can be used with Eqn (15) to adjust the time at 
which infiltration calculated with Eqn (15) occurs. The method used for nonuniform initial water 
content profiles and non-uniform soil properties given in Appendix 1 are also applicable to Eqn (15).   

However, the Green and Ampt soil is more amenable to being included in the MEDLI model and has 
been shown widely to give good estimates of the infiltration of water into soil. Thus, I suggest that the 
Green and Ampt model be adopted for use in MEDLI. The GA model as given in Section 2.1.3.1 is for 
ponded infiltration into a soil with uniform initial water content and soil properties. Its adaption for 
rainfall rates where the initial infiltration will be flux controlled using the time-compression analysis is 
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given below in Section 2.1.4, and adaption for nonuniform initial water content and soil properties is 
given in Appendix 1. 

2.1.4. Time to Ponding and Time Compression Analysis 

During rainfall and sprinkler irrigation, the soil surface will remain unsaturated if the average rate of 
application, R (m s-1), is less than the potential infiltration rate, ipot (m s-1). If R > ipot the soil surface will 
become saturated at some elapsed infiltration time tp, which will depend on the ratio of R/Ks. White et 
al. (1989) showed the following equation was able to determine the time to ponding for exact 
solutions, as well as for experimental data: 
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where 

𝑅̄𝑅𝑝𝑝 = 𝑡𝑡𝑝𝑝−1 ∫ 𝑅𝑅(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑝𝑝
0  is the average water application = surface flux (m s-1) up to the time of ponding  

R(t) is the variable water application rate (=surface flux) with time (m s-1) 

M is a soil specific property, which White and Broadbridge (1988) suggested range from 0.5 to 0.66 

S(θdry) is the sorptivity of the dry soil (m s-1/2) 

tp (s) is the time of surface ponding 

R(tp) is the surface flux into the soil at tp (m s-1) 

Ip is the cumulative infiltration up to tp (m) 

White and Broadbridge (1988) suggested that a value of M = 0.55 was consistent with measurements 
and this has been widely adopted in solutions of water flow including measurements using disc 
permeameters (Cook and Broeren, 1994).  

For a Green and Ampt soil, Broadbridge and White (1987) showed that tp in Eqn (16) can be simplified 
to the Mein and Larson (1973) version of the Green and Ampt equation: 

 

[ ]2 / 2 ( )p st S R R K= −        (17) 

 

for constant surface flux R. However, Broadbridge and White (1987) found this considerably 
overestimated tp when R and hence ipot approached Ks. An example is given in Figure 12 for a soil 
with clay soil properties (Table A1 in Appendix 2) and shows the comparison of tp calculated with 
Eqns (16) and (17). This shows that as R approaches Ks the value of tp from Eqn (17) becomes large 
and diverges markedly from that calculated with Eqn (16) with M = 0.55. This was noted in 
Broadbridge and White (1987) who advised that the Green-Ampt solution substantially overestimates 
tp as R/Ks approaches 1. 
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Figure 12. Comparison of time to ponding for various infiltration solutions (Eqns 16 and 17) for a sandy loam soil 
(Table A1). tp is plotted on a log scale due to the large range in values at low R. 

Accepting that Eqn (16) gives the more realistic value of tp allows the use of the time-compression 
analysis (TCA) of Salvucci and Entekhabi (1994) with a small variation for the cumulative infiltration, 
which is given below. 

For the TCA analysis, the surface flux at tp (R(tp)) is matched to the infiltration rate from Eqn (12) to 
get the time parameter (tc) (Figure 13). The value of tc is the time at which the GA model gives an 
infiltration rate i(tc) equal to the surface flux (R(tp)) at tp. This can be achieved using recursive methods 
such as Newton-Raphson (Ralston, 1965). The cumulative infiltration I(tc) calculated with Eqn (8) will 
be equal to the actual cumulative infiltration Rtp, so 𝑡𝑡𝑝𝑝 = 𝐼𝐼(𝑡𝑡𝑐𝑐)/𝑅𝑅. The cumulative infiltration and 
infiltration rate can then be calculated with Eqns (8) and (12) respectively, but with an adjusted time 
(t’) given by 𝑡𝑡′ = 𝑡𝑡 − (𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑐𝑐). 



 

MEDLI science review: Modelling of water and solute transport in MEDLI  |  Final report 
32 

t (day)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

i  (
m

m
 d

ay
-1

)

25

30

35

40

45

50

55

60

tc
tp

Runoff

Green and Ampt

i(t-tp+tc)

 
Figure 13. Illustration of the time compression analysis method (TCA) using the same data as in Figure 12 with a 
value of R = 35 mm day-1. This shows that the matching of the fluxes (GA vs real world behaviour) occurred at tc 
= 0.090 day. Solving Eqn (16) gives the value of tp = 0.59 day. The heavy dark line shows the actual infiltration 
and the difference between the actual infiltration rate and the steady rainfall rate R is the runoff rate. The shaded 
area is the cumulative runoff.  

We then shift the infiltration rate curve so that i(tc) from Eqn (12) now matches R at tp by adjusting the 
time so that the infiltration rate is now given by: 
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The cumulative infiltration (I(t)) will be given by: 
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where IGA is the cumulative infiltration calculated with Eqn (8) (m). 

The methods described here will require the rainfall input to be at a time step of less than 1 day.  

An example of using the TCA analysis on a sandy loam soil (hydraulic properties are given in Table 
A1) is presented in Figure 14. This shows the change in the infiltration rate and the shifting of the 
curve so that the rate matches at tp (Figure 14a) and the cumulative infiltration compared to the 
cumulative surface flux (Figure 14b). The difference between the cumulative surface flux (cumulative 
rainfall) and the cumulative infiltration is the runoff. By 20 minutes, the cumulative runoff has reached 
10.6 mm (20.8 -10.2).  
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Figure 14. An illustration of the TCA analysis for a sandy loam soil with a surface rainfall flux of 5Ks: a) infiltration 
rate with elapsed time showing the time when the infiltration rate is the same as the surface flux and the shifting 
of Green and Ampt curve to match at tp; b) cumulative rainfall (Rt) and cumulative infiltration calculated with TCA 
(I). The shaded area is cumulative runoff, which is simply Rt -I.  

Using Eqn (16) as R approaches Ks, tp can become less than tc. This occurs as R approaches Ks but 
the correct value of tc and tp and I(t) will be calculated if Eqns (16) and (19) are used. 

The analysis that has been done here has used a constant rate of surface flux, but as is implied in 
Eqn (16) a variable rate with time can be used when determining the value of tp. Cook (1988) used the 
time to ponding approach in designing a lateral move irrigator.  
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2.1.5. Layered Soils 

The GA model has been extended to layered soils by (Bouwer 1969) and this method has been 
adapted for the MEDLI model approach in Appendix 1.  

2.1.6. Infiltration Model for MEDLI 

The use of the GA model with the combination of the White et al. (1989) time to ponding, the TCA 
analysis and the nonuniform initial water content profile (see Appendix 1) and layered soils would 
provide a robust infiltration model for MEDLI. The mathematics to implement such a model are given 
in Appendix 1 along with the list of equations. Also, a spreadsheet with the above methods and those 
in Appendix 1 have been provided to assist with implementation.  

To implement this will require the following soil physical properties for each soil horizon: 

• Saturated water content (θs)  
• Saturate hydraulic conductivity (Ks) 
• The air entry potential (ψb) 
• The pore size distribution parameter λ 
• The soil separated into discrete boxes 
• The thickness of each soil horizon. 
• Measured Sorptivity or determined from Eqn (9). 

In addition, the following data will be required: 

• The rainfall rate (R) at time steps of less than 1 day. This could be obtained from the daily 
rainfall using a disaggregation model such as that of Connolly et al. (1998) or from rate 
duration curves (www.bom.gov.au/water/designRainfalls/revised-ifd/).  At present this may be 
difficult to implement in MEDLI and further consideration of this aspect needs to be 
considered before the GA method is implemented in MEDLI. This is beyond the scope of this 
report.  

• The initial soil water content profile 

The rainfall rate may only be available from total rainfall depth and length of event. This data only 
allows the average rainfall intensity to be estimated, so will result in underestimation of runoff and 
overestimation of infiltration. One final point, if the wetting front depth, zf, exceeds the depth of the 
modelled soil profile (zmax), then any infiltration once zf > zmax will become deep drainage. 

2.2. Drainage 
Sisson et al. (1980) and Raats (1983) provide solutions where the drainage flux and the water content 
at a specific depth and time can be described by the average water content above that depth at that 
time. Another useful solution that used the Green and Ampt approach for drainage was developed by 
Youngs (1960) and extended by Youngs and Aggelides (1976) to a situation where infiltration is still 
occurring at the soil surface but at a rate much less than the saturated hydraulic conductivity. Cook et 
al. (2008) used the linear soil concept to develop a drainage model. On further examination during 
this report, I now conclude that this approach may result in some anomalous behaviour, which is a 
feature of box models and described below in more detail, will not be pursued any further here. The 
approaches by Sisson et al. (1980) and Youngs (1960) are different in the way in which the profile will 
drain. With the Sisson approach, the soil drains with the water content profile moving from right to left 
in Figure (15a). This shows water decreasing at all depths with time. While for the Youngs approach, 
a square wave moves down the soil profile, with water content above the draining front draining to the 
drained upper limit water content and that below the draining front remaining at the initial water 
content (Figure 15b). This is similar to a cascading bucket model (e.g., MEDLI) but requires a high 
water table to become valid. This would not be a condition that would be suitable for wastewater 
irrigation. 
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Figure 15. Drainage of water from a uniform soil profile with a) Sisson method (Eqn (20)) and b) Youngs method. 
The soil properties are taken from Sisson et al. (1980). For the Youngs method a water table at 2 m was 
assumed to exist. θdul is the water content at the drained upper limit. 

Each of these methods has some merit as measurements have shown that the development of either 
of the soil water content profiles during drainage can occur, but more soils follow the Sisson type 
profiles. John Knight (pers. comm.) found that these different draining profiles are due to the bottom 
boundary condition in the models. He found that a model like the Sisson model applies if free 
drainage occurs at the bottom boundary, which means any water table is far enough below this lower 
boundary to have no influence on the drainage. The Youngs model is appropriate if a water table is 
close or is the bottom boundary which results in a restriction to the amount of drainage. Both solutions 
assume a thoroughly wetted initial soil profile. The Sisson method assumes that at the soil surface, 
the water content reduces to θc for t > 0. This can be seen in Figure 15a with all the curves converging 
on this point at z = 0. The value of θc is less than θdul otherwise the profile will only drain very slowly 
towards θdul. These methods do not account for evapotranspiration, which will also reduce the water 
content of the soil. Both methods can be adapted to nonuniform initial water contents and nonuniform 
soil properties. 

For uniform soil profiles, the equations for the Sisson method are: 
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where 

m = 2λ+3 is the pore size distribution parameter for the Brooks and Corey hydraulic conductivity 
function. The value of λ can be found from the relationship between θ and ψ (see Fig. 10) or by pedo-
transfer functions (Cook and Cresswell, 2007) or from tables such as those in Table A2 from Clapp 
and Hornberger (1978). 

Ks = saturated hydraulic conductivity (m s-1) 
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 z depth (m) at t’ (s) 

θc is the water content that the surface of the soil drains to  

t' is the time since the start of the drainage event (s) 

Youngs (1960) method relies on there being a water table at some known shallow depth. Where 
MEDLI is applied this is unlikely as such sites would not be suitable for wastewater irrigation. This 
method is unlikely to be as useful as Sisson’s method, so is not developed further here.  

Another way to use the Sisson et al. (1980) method can be developed from the fact that the flux can 
be given by: 
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where 

j(z,t’) is the flux rate at depth z at time t’ (m  s-1). 

Integration of Eqn (21) with time will give the total amount of water that has passed beyond z at time 
t’. This provides a perfect solution for calculating the drainage in a box model like MEDLI, as the 
values of z can be the depth of the bottom of the boxes (z1, z2 …zn). The integral of Eqn (21) with time 
is: 
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  (22) 

 

t' is the time since the start of the drainage event (s),  

'
0t  (s) is the time when the draining front reaches the depth z. Prior to '

0t  the water content is 

maintained at a constant value of θs due to the drainage water from above z. 

J(z,t’) is the cumulative drainage of water from the soil profile above a depth z at the time t’. 

The water storage W (m) above z at time t’ and water content θ(z,t’) (m3 m-3) are calculated by: 
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The valuable feature of Eqns (22) and (23) is that the flux (j(z,t’)) as a function of depth and time is 
known, so this can be coupled with solute transport solutions. Also, it is relatively easy to calculate 
drainage for nonuniform soil water profiles and nonuniform soil properties. The values of θ(z,t’) 
calculated with Eqns (22) and (23) are identical to θ(z,t’) calculated with Eqn (20), as they should be. 
The adaption of Eqn (22) to nonuniform water contents at the start of drainage and the computational 
procedure is given in Appendix 3. For the clay loam soil with only wetting to 0.45 m, the profile drains 
quickly with the redistribution of water further down the soil profile. This should be checked out further 
before adoption in MEDLI. 
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Figure 16. Drainage of water from: a) a uniform soil profile with: a) Sisson method (Eqn (20)); b) nonuniform 
profile using a method described in Appendix 3. The soil properties are taken from Sisson (1980).  

The drainage method of Sisson et al. (1980) would appear to give more realistic results than that of 
Youngs (1960). The Sisson method requires the following soil properties: Ks, θs, m and θc. Of these, 
only θc is not readily available, but this could be estimated as a fraction of θdul. A value of 0.83θdul was 
used in Figures 15 and 16 and this is a suitable value. For uniform soil profiles this seems to work well 
but will need to be checked by comparison with numerical models such as HYDRUS1D. 
Evapotranspiration is going to reduce the water content at each time step, so that if θc = θdul was used 
this may lead to only a small difference in the drainage. 

The present MEDLI model is based on the cascading bucket model from EPIC (Sharpley and 
Williams, 1990) and given by: 
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where 

Dri is the drainage rate from the ith layer (m) during the time step of the model 

Swi is the soil water storage in the ith layer (m) 

fci is the field capacity or drained upper limit storage of the ith layer (m) 

Ui is the proportional drainage factor for the ith layer 
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TTi is the travel time for the ith layer (s) 

Swmax is the maximum soil water storage in the ith layer (m) 

𝐾𝐾𝑠𝑠𝑖𝑖 is the saturated hydraulic conductivity of the ith layer (m s-1) 

All such cascading box drainage models with a fixed time step are fundamentally flawed. The 
reason is that in a uniform soil draining from saturation with layers of equal thickness in the first time 
step, only the first layer will drain - as the same volume of water coming from layer 1 will also be going 
out of layer 2 and so forth to the last layer, with the same volume then being lost to deep drainage. 
What this means is that the drainage of the soil is dependent on the thickness of the layers and the 
time step used in the model. This is shown in Figure 17 where the Sisson model is compared to the 
MEDLI for different layer thicknesses and time steps. 
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Figure 17. Comparison of the Sisson models and MEDLI drainage model with the soil properties from Sisson 
(1980): a) Ui = 1 for MEDLI model, space steps of 5 cm and time steps of 1 day, b) same as Figure 17a but with 
Ui = 0.5, c) Ui = 0.5 for MEDLI model, space steps of 25 cm and time steps of 1 day, d) Ui = 0.05 for MEDLI 
model, space steps of 5 cm and time steps of 0.1 day.  

 

When the values of soil in Sisson et al. (1980) were used (Table A1) the value of TTi was 0.0113 day 
and Ui was 1. With Ui = 1, spatial steps of 0.05 m and time steps of 1 day the drainage front would 
only reach a depth of 0.15 m as only 3 depth boxes will be drained (Figure 17a). Changing the value 
of Ui to 0.5 changes the shape of the drain front but not the depth (Figure 17b). Changing the spatial 
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steps to 0.25 m changes the depth of the drainage front dramatically (Figure 17c) while changing the 
time step does not dramatically change the drainage front. These results show that not only MEDLI, 
but any cascading box model is very dependent on the spatial step size. Cumulative drainage plots 
(Figure 18a) highlight these model differences. When the drainage time is extended to 10 days 
(Figure 18b), the number of timesteps (10) now exceeds the number of soil layers (4) being modelled 
for scenario shown in Figure 17c. After day 4, the quantity of draining water exiting the bottom of the 
soil profile at each timestep declines, as the accumulated deep drainage approaches total profile 
drainable water (Profile SWmax – Profile FC) at time = 0. The Sisson curve shown in Figure 18b 
supports field observations that downward drainage from saturated covered plots materially 
decreases (to say ≤1mm/day) after 2 to 3 days of drainage. However, the slower deep drainage rate 
predicted by the MEDLI algorithm would allow transpiration to use some of this water in the drainable 
store, which would lead to further underestimating deep drainage by the integrated MEDLI model. 

 

a
a 
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Figure 18. Comparison of the cumulative drainage shown by Sisson method and MEDLI for a) the four scenarios 
defined in Figure 17 and b) for the scenario defined in Figure 17c, extended to 10 days cumulative drainage time. 

 

What this also means is that the deep drainage (DD) for a soil profile with only drainage loss starting 
at saturation is given by: 
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where 

td is the time since the start of drainage (s) 

∆t is the time step (s). 

Soil data from Sisson et al. (1980) using a value of ∆t = 1 day would result in a value of ∆z = 15.5 m. 
This value of ∆z is unrealistic but indicates that daily cascading box models will have problems 
representing actual drainage. Evapotranspiration will also extract water from the soil profile changing 
the shape of the water content profile and hence the drainage at the next time step. This means that 
the models used for drainage and evapotranspiration will be convolved and being able to determine 
each component from experimental data will be difficult. This also means that the order that 
processes are carried out in the water balance models will change the amounts of water determined 
as drainage and/or evapotranspiration. This means that the evapotranspiration models need to be 
considered as affecting the drainage process. 

The problems shown here for the MEDLI model will also occur in all cascading box drainage models 
including WASOM1, which was developed by the author. For these cascading box drainage models 
the order of calculation of the drainage and evaporation process can affect the drainage if they are 
implemented sequentially. If evapotranspiration losses are calculated before drainage, then there will 
be less water for drainage, whereas if drainage is calculated first then transpiration can be affected if 
the water content of the box is greater than the aeration limit (see Section 2.3 below). 

 

b 
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2.3. Root water uptake and transpiration 
A comprehensive review of soil water plant root systems has been undertaken by Feddes and Raats 
(2004). The water uptake in a root zone is a combination of potential root sink term Sp (s-1) and a 
dimensionless function (hs) related to the availability of the water to the plant such that the actual sink 
term (Su (s-1)) is given by (Feddes et al., 1978): 

 

( ) ( )u s pS h Sψ ψ=       (26) 

 

The value of hs is defined by the soil matric potential in Figure (19). 
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Figure 19. Schematic of hs function with matric potential for the following turning points: ψ > ψ1 zero uptake due 
to a lack of aeration; ψ1 ≤ ψ > ψ2 the uptake increases up to a maximum at ψ2; ψ2 ≤ ψ > ψ3 the uptake is at a 
maximum; ψ3 ≤ ψ > ψ4 the uptake decreases due to limited available water; ψ < ψ4 zero uptake as at the lower 
limit of water extraction. This also shows that ψ3 changes depending on the potential transpiration rate (Tp). 

The matric potential points in Figure 19 can easily be converted to water contents if the moisture 
retention characteristic of the soil is known. The values of the potentials for various crops can be 
found in the literature and are also found in HYDRUS1D, which can be downloaded for free. The root 
distribution in the soil will also have an effect on where the water is taken from in the soil. In their 
original publication Feddes et al. (1978) considered the root uptake to be homogeneous throughout 
the root depth of the crop so that: 
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where  

SP is the potential root sink term (s-1) 

TP is the potential transpiration rate (m s-1) 

Zr is the rooting depth of the crop (m) 

This was modified by Prasad (1988) to have a linear decrease in uptake with depth. McAneney and 
Judd (1983) observed that the percentage uptake for pasture varied non-linearly with the proportion of 
the root depth (Figure 20). 

 

 

Figure 20. Normalised water extraction from McAneney and Judd (1983, Fig.4) and surface soil moisture 
measurements versus normalised rooting depth for the 198—1981 season. The dashed line is a 1:1 plot and 
demonstrates what would occur if each depth increment contributed equally to water extraction. The figure is 
taken from (McAneney and Judd (1983, Fig. 5). 

The data of McAneney and Judd (1983) can be used to develop a weighting function (f(z)) with 
rooting depth that then modifies Eqn (27) to: 

 

 ( ) ( ), 0p p rS z T f z z Z= ≤ ≤     (28) 

 

where f(z) is a weighting function (m-1). 

The function developed is shown in Figure 21. 
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Figure 21. Weighting function for % rooting depth based on McAneney and Judd (1983). 

Alternatively, if root length density data is available then this can be used to develop f(z) using (Nimah 
and Hanks, 1973): 
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where Lr(z) is the root length density as a function of depth (m m-3). 

However, MEDLI users are unlikely to have root length density data but this could be obtained from 
literature values or using a function relationship such as Eqn (5) in Cook and Kelliher (2006). 
Combining Eqns (26) and (28) allows the transpiration (T) to be determined by: 
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     (30) 

 

For the MEDLI model, Eqn (28) will need to comply with the discretisation of the model with constant 
values of hs and Sp for each depth interval.  
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Another simple way to determine the transpiration is to use the total soil water deficit as a means to 
determine the value of Tp and is calculated as (McAneney and Judd, 1983): 
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where 

( )
0

( ) ( )rZ

m dul lS z z dzθ θ= −∫  is the maximum profile soil water deficit (m) 

θl is the lower water content or the 15-bar water content 

( )
0

( ) ( ) ( )rZ

t lS t t z dzθ θ= −∫  is the profile soil water deficit at time t (m) 

( )
0

( ) ( )rZ

c dul pS z z dzθ θ= −∫  is the profile water storage deficit for readily available water (m) 

θp is the water content at the readily available water limit and Sc is often called the readily available 
plant water capacity. 

The transpiration will still need to be apportioned with depth and soil water status. An equivalent of 
Eqn (30) can be written for each box in the MEDLI model to give the soil water status and either the 
weighting function in Figure 21 or Eqn (29) can be used for the depth weighting function. Eqn (31) 
combined with the weighting function given in Figure 21 would be relatively easily incorporated into 
MEDLI and would be a first step in modification of the transpiration calculation.  

The transpiration losses from each box can be determined and the water content of each box in the 
MEDLI model reduced. I am suggesting this is done before the drainage flux has been calculated for 
reasons given above in the drainage section.  

2.3.1. Partitioning Potential Evapotranspiration to Evaporation and Transpiration 

The potential evapotranspiration (PET) consists of two components: the soil evaporation and the 
transpiration. In order to determine the potential transpiration (Tp) and the potential evaporation (Ep), 
various methods are used to determine this partitioning.  The model used in MEDLI follows that of 
Ritchie (1972), which has been adopted in many water balance models. Here an alternative is given, 
which is used in HYDRUS1D (Sutanto et al. 2012). 

2.3.1.1 Soil evaporation 

The evaporation from soils involves a two-stage process. The first stage is soil controlled by the 
energy to evaporate the water while the second stage is controlled by the rate at which water can be 
transported through the soil to the soil surface.  These processes can be described by: 

 

𝐸𝐸𝑜𝑜𝑜𝑜 = 𝐸𝐸𝑝𝑝,𝐸𝐸𝑝𝑝 ≥ 𝐸𝐸𝑜𝑜𝑜𝑜 
𝐸𝐸𝑠𝑠 = 1

2
𝐷𝐷𝑒𝑒√𝑡𝑡′,𝐸𝐸𝑠𝑠 < 𝐸𝐸𝑝𝑝     (32) 

 

where  

Ep and Tp are given by (Sutanto et al. 2012): 
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LAI is the leaf area index 

Ep is the potential soil evaporation (m) 

Tp is the potential plant transpiration (m) 

Eos is the evaporation rate during first stage (m)    

Es is the evaporation rate during second stage (m) 

t' is the time since the last wetting event occurred (s) 

De is the desorptivity and can be obtained from the diffusivity with methods of calculation given in 
Lockington (1994) (m s-1/2). 

Since De is determined from the water content of the first box in MEDLI, small rainfall events may not 
cause stage 1 evaporation to occur. De is equivalent to the CONA parameter used in the present 
MEDLI model. 

For the plant cover factor MEDLI uses Beers law with an extinction coefficient of -0.65. A comparison 
with the crop factor in Eqn (33) (1-exp(-0.463LAI) and the MEDLI plant crop factor is shown in Figure 
22 and indicates that Eqn (33) would give a lower value than that currently calculated with MEDLI. 
The MEDLI method would give larger estimates of soil evaporation than Eqn (33). This would result in 
less soil evaporation if Eqn (33) was used and more transpiration. Sutanto et al. (2012) found that 
estimates using Eqn (33) in HYDRUS1D gave results for soil evaporation that were greater than those 
obtained with isotope analysis and water balance methods. Changing to Eqn (33) would be unlikely to 
have a large effect on evapotranspiration calculated with MEDLI but given that evapotranspiration is 
convolved with drainage it could affect the deep drainage. Further investigation of LAI on evaporation 
with the present method in MEDLI and Eqn (33) will require comparisons with measured data. 
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Figure 22. Comparison of plant crop factor from Sutanto et al. (2012) (1-exp (-0.463LAI)) and MEDLI (1-exp(-
0.65LAI)). 
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The above methods for evaporation require that t' is reset to zero after each wetting event. The soil 
evaporation comes only from the first two boxes in the MEDLI model with the less water being taken 
from the second layer, which can only dry to the lower storage limit. This does now allow for rewetting 
of the first layer from the second layer. Cook et al. (2008) adopted the Deardoff (1977) force-restore 
method for calculating the soil evaporation. This method allows for rewetting of the first layer by 
upward diffusion of water from the second layer due to the water content gradient. Deardoff (1977) 
used this method to overcome the fact that soil evaporation is often underestimated in box models. 
However, as full crop cover is likely in MEDLI modelling, any error may be very small, and the extra 
complication would not be sensible in MEDLI. 

The synthesis report on the MEDLI Science Review (Gardner, 2021) covers the MEDLI approach to 
calculating the soil evaporation and transpiration. The present MEDLI evaporation model considers 
both plant cover and residual dead plant material but does not take into account the depth or mass of 
the residual dead plant material. Soil evaporation is considered to be zero under residual dead plant 
material, regardless of mass. The HowLeaky (McClymont, 2018) model uses an algorithm that does 
account for this and is given by: 

 

( )exp 0.22 /1000pr pE E TCR=     (34) 

 

where 

Epr is the potential evapotranspiration considering the crop residual (m) 

TCR is the total crop residual in (tonnes ha-1) 

Equation (34) could be added to MEDLI to account for the impact of residual plant material mass left 
after harvesting on the soil evaporation rate. This may be an important addition especially as soil 
evaporation will increase, leading to the prediction of higher irrigation demand. The evapotranspiration 
will affect the drainage rate and leaching of solutes to the ground water. Epr would replace Ep in Eqn 
(32) when calculating the soil evaporation. 

3. Solute Transport 
Solute transport in soils occurs due to two main processes: advection where the solute travels along 
with the water, and dispersion. The dispersion is made up of two aspects, solute movement due to 
molecular diffusion because of solute concentration gradients and smearing out effects due to 
different soil water velocities in different sized pores, and different velocities across the diameter of 
any given pore.  

3.1. Piston flow 
Advective transport is analogous to the Green and Ampt infiltration model with a sharp front between 
the invading solution and the resident solution in the soil.  This is often called piston flow and is shown 
schematically in Figure 23. 

 



 

MEDLI science review: Modelling of water and solute transport in MEDLI  |  Final report 
47 

 

Figure 23. Schematic diagram of piston flow during infiltration into a soil showing idealised the water and solute 
fronts. The water wetting front is deeper (zd) into the soil as water in the soil prior to infiltration is pushed out of 
the pores ahead of the water that has infiltrated. Ci is the concentration in the infiltrating water and Co is the 
solute initially present in the soil for a non-absorbed passive solute like chloride or nitrate. zm is the depth that the 
infiltrating solute has moved to. A retarded solute like ammonium or phosphate will sorb onto the soil solids, 
which slows its progress through the soil so that zr < zm. The concentration of the retarded solute in the infiltrating 
water is Cir and the initial concentration in the soil is Cor. 

The sharp fronts of water, solute & retarded solute are such that zd > zm > zr, which in turn can be 
calculated by: 
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where  

Rs is the retardation factor > 1. 

Retardation of a solute occurs because the solute interacts with the soil matrix until an equilibrium is 
reached between the solutes on the soil solids and the solute in solution due to chemical adsorption 
reactions, which are usually reversible. This means that the solute gets retarded in its transmission 
through the soil. 

The volume of water that was in the soil to the depth zm is displaced downward (sometimes called the 
snow plough effect). This water has a concentration of the original soil solute concentration (co). The 
new water with an inert solute (such as chloride or nitrate) with a concentration of ci will move by 
advection to the depth zm. However, if the solute interacts with the soil solids as it is transported (e.g., 
because of anion adsorption) it will be retarded, and the reduced solute front will be given by zr.  

It has been shown this advective front coincides with the centre of mass of the dispersed front. This is 
illustrated in Figure 24, which is taken from Clothier and Scotter (1985). This assumption works well 
for infiltration when the Green and Ampt model is used, as the value of I(t) and the depths zd, zm and 
zr are easily calculated. This means that for infiltration of water with a solute concentration of ci, the 
soil water to a depth zm or zr will have a solute concentration equal to this input concentration ci. 
Below these depths, the concentration will be at the initial soil water concentration of co. 
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Dispersion at the solute front can be estimated using a method developed by Elrick et al. (1987). This 
spreads the solute out around the centroid of the solute front and is calculated by: 

 

( ) ( ) ( )( , ) erfc
2 2

i o m
o

s

c c z t z tc z t c
R D t

 − −
= +  

 
    (36) 

 

where 

ci is the input concentration (kg m-3) 

co is the original concentration in the soil (kg m-3) 

R is the retardation factor 

Ds is the solute dispersion coefficient (m2 s-1), which can be approximated as 1/10 of the solute travel 
distance. 

For a model such as MEDLI, the development of the actual shape of the solute distribution may not 
be as important as calculating where the solute front is. This is because the values of zm and zr are 
unlikely to occur at the exact boundaries of the boxes in the MEDLI model. The result will be that for 
the box where the front ends up, the solute concentration will be mixed throughout the box. If this 
occurs in the kth box, then for the concentration at the end of the time step this will be given by: 

 

( ) ( ) ( )1 1/k i m k o k m k kc c z z c z z z z− −= − + − −      (37) 

 

This means that rather than a sharp transition from ci to co the front will get dispersed due to the 
structure of the model. This is termed numerical dispersion as it arises due to the discretisation of the 
space (see Cook 2017). The initial concentration is given here as uniform throughout the soil profile, 
but this is not a strict requirement. The initial concentration could vary with depth, and the water in the 
depth increment between zd and zm would contain the displaced solute. This would be transferred 
from one box to the next as it is displaced downward, and the concentrations in the boxes that are 
wetted are calculated from the water content and mass of displaced solute. This advection only model 
is relatively easy to implement and is already the basis of the solute transport in MEDLI. The 
difference would be related to the infiltration model if the GA model was implemented. 
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Figure 24. Illustration of horizontal water and solute transport in soil and how the advective solute front (solid 
lines) compares with the actual dispersed front (data dots). Note that I is cumulative infiltration, 𝝷𝝷 is water content 
of the transmission zone, 𝝷𝝷n is the initial soil water content, and R is the retardation factor. The data are profiles 
of a) water, b) chloride (Cl-) and c) potassium (K+) for a Brookston silty clay loam after 21600 sec of adsorption of 
1.0M KCl. The Data are from Laryea (1982).  

The simplified advection model can also be used to develop a stochastic approach to solute transport 
if the soil is considered as a collection of stream tubes, with the infiltration in each tube controlled by 
the local soil physical properties. Biggar and Nielsen (1976) found that the velocity of water flow 
measured at numerous points across a field plot had a log normal distribution. The mean and 
standard deviation of the log transformed velocity were calculated from this data set. Hence the mean 
solute concentration with depth, assuming the same boundary conditions as in Figure 23 can then be 
written as (Warrick, 2003): 
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      (38) 

where 

µ is mean of the log normal velocities with the velocities in units of (m s-1) 

σ is the standard deviation of the log normal velocities. 

Warrick (2003) used the data of Biggar and Nielsen (1976) to compare the difference in solute 
concentration calculated using a mean velocity and a piston front assumption (calculated with Eqn 
(35)) vs the assumption of advection and dispersion due to velocity differences in the stream tubes 
(described by Eqn 38). The comparison is shown in Figure 25 where the much more dispersed nature 
of the real solute concentration with soil depth is evident. The values for µ and σ were respectively 
3.01 and 1.25. This results in a mean value of the velocity of 44.3 cm day-1 (exp(µ+0.5σ2)) on day 5. 
The mean piston flow solute front will be at a depth of 2.22 m (5x44.3 = 221.6/100) as shown in 
Figure 25. In comparison the stream tube model shows that some solute would have reached 4 m by 
day 5. The concentration distribution with depth shown in Figure 25 for the stream tube model is that 
which would be measured by sampling the whole field with multiple soil cores and calculating the 
mean concentration at each depth. 

The stream tube concentration with depth shape is similar to that for the resident concentration given 
in Scotter and Ross (1994), which is not surprising as they are both using a velocity distribution to 
calculate the solute concentrations. More details on the Scotter and Ross (1994) approach are given 
in Section 3.3. 
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Figure 25. Comparison of relative concentration of a solute with depth at day 5 following a step change of 
concentration in the infiltrating water at the soil surface. The piston value is calculated from Eqn (35). Using the 
mean velocity and assuming piston flow. The stream tube model uses Eqn (38) and the log normal distribution of 
velocities to calculate a mean relative concentration from an infinite number of stream tubes. More detail is given 
in the text above. 
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3.2. Advective Dispersive Equation (ADE) 
The advection dispersion equation (sometimes called the convection dispersion equation) combines 
the effects of the advection of the solute due to the transport with the soil water, with dispersion due to 
hydrodynamic dispersion and molecular diffusion. The hydrodynamic dispersion occurs due to 
differences in the velocity between pores of varying diameter and also due to variation in the water 
velocity across a soil pore due to friction. The ADE equation in one dimension (vertical) is given by 
(Warrick, 2003): 

 

2

2s
C C CD V
t z z

∂ ∂ ∂
= −

∂ ∂ ∂
      (39) 

 

where 

C is the concentration (kg m-3) 

Ds = Da/θ is the dispersion coefficient (m2 s-1) 

Da is the apparent dispersion coefficient (m2 s-1) 

V = Jw/θ  is the velocity of water through the soil pores (m s-1) 

θ is the water content at time t at depth z. 

Jw is the macroscopic water flux density (m3 water /m2 soil cross section/unit time) through the soil 
matrix (m s-1) and can be obtained by solving Eqn (2). 

There have been many publications on transport of solutes in soil with different boundary conditions 
using the advective dispersion equation. Many useful analytical solutions are available for equation 
(36) and have been summarised by van Genuchten and Alves (1982) and Warrick (2003). Field solute 
transport experiments showed that the ADE equation does not always give a good representation of 
the solute distribution in the soil due to preferential flow. This has resulted in development of the 
mobile-immobile water concept which, when incorporated into Eqn (39), gives:  
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2
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m im m m w
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    (40) 

 

where 

θm is the mobile water phase 

θim is the immobile water phase  

and m imθ θ θ= +   

Cm is the concentration in the mobile water phase (kg m-3) 

Cim is the concentration in immobile water phase (kg m-3) 

The solute is assumed to only be transferred in the mobile water phase, whilst transfer between the 
immobile and mobile phases occurs at a rate limiting first order equation given by: 

 

( )im
im m im
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∂
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where α is the first order rate constant (kg s-1). 

The solute will transfer from the mobile to the mobile phase when Cm > Cim and from the immobile to 
the mobile phase when Cm < Cim. The amount transfer will depend on the difference in the 
concentrations and the values of α and θ im. To implement this model in MEDLI would be both 
computationally intensive and is fraught with difficulties associated with numerical instabilities that can 
develop when using numerical solutions.  

3.3. Transfer Function Model 
Jury (1982) developed an alternative method for addressing the log normal distribution of pore water 
velocities on the solute distributions found in field situations. He used a transfer function that uses a 
probability density function to predict the solute distribution in the soil profile and is described by: 

 

' ' '

0
( , ) (0, ) ( , )

t
C z t C t f z t t dt= −∫      (42) 

 

where 

t’ is the dummy variable in the integral (s) 

f(z, t – t’) is the probability density function (pdf) (dimensionless). 

Examples of normal (gaussian) and log normal pdfs are shown in Figure 26. The normal distribution 
has a bell-shaped curve centred on the mean whilst the log normal curve has a long tail to the right 
with higher values of the variable (x). When x is transformed using the natural logarithm (ln) of x, the 
distribution becomes gaussian. 
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Figure 26. Probability density functions for a) a normal probability distribution f(x) versus variable (x) and b) a 
lognormal distribution. The probability distribution becomes normal when x is transformed to ln(x). (see insert in 
panel b). 

The mean and variance at a particular depth can be obtained from Eqn (42) for known pdfs, and the 
concentration as a function of depth can then be obtained. The methods to do this can be found in 
Jury and Roth (1990). However, the detail required to implement this in a model like MEDLI is fraught 
with difficulty compared to using the piston flow model. 
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A simpler version of this was provided by Scotter and Ross (1994). They developed a simple 
stochastic solute distribution function that is based on soil hydraulic properties. It is an alternative to 
the approach that treats the soil as a ‘black box’. Their model assumes that the velocity in the pores is 
related to the differential of the hydraulic conductivity with respect to the water content: 

 

( )( ) dKv
d
θθ
θ

=      (43) 

 

This gives a relationship between how fast water is flowing in different pores sizes with the water 
content. For the Brooks and Corey type of model (see Figure 10) the hydraulic conductivity function is 
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where 

Ks is the saturated hydraulic conductivity (m s-1) 

θs is the saturated water content (m3 m-3)  

θr is the residual water content (m3 m-3), which is the water content at which capillary water flow is 
considered to be zero 

m = 2λ+3 is the power coefficient for the Brooks and Corey hydraulic conductivity function 

v(θ) is the pore water velocity of the water at θ 

vmax is the maximum pore water velocity of the water at θs 

Scotter and Ross (1994) only considered a vmax for saturated soil.  However, during non-ponded 
infiltration when t < tp, the water content in the wetting zone will be < θs. This means that the maximum 
velocity under these circumstances will be less than vmax but can still be calculated with Eqn (44).  

The relationship between v/vmax and the reduced water content (𝜃𝜃 − 𝜃𝜃𝑟𝑟)/(𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟), could be used to 
define the proportion of the solute in the soil that is resident and does not readily move, and the 
proportion that of solute that is mobile. For example if we considered the boundary between resident 
and mobile regions of the soil as being defined by v/vmax = 0.1, then for m = 10, the reduced water 
content (𝜃𝜃 − 𝜃𝜃𝑟𝑟)/(𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟) at which this occurs is 0.77, which implies that 23% of the reduced water 
content is in the mobile region and 77% in the resident or immobile region (Figure 27). For m = 4, the 
reduced water content at which v/vmax = 0.1 is 0.46, which implies 54% of the pore space is in the 
mobile region and 46% in the resident or immobile region. This approach could be used to determine 
the proportion of the solute mass that is transferred between boxes in the MEDLI model when 
drainage is occurring. The water content at this divide between resident and mobile regions of the soil 
may not coincide with the θdul as was pointed out by Scotter et al. (1993). 

For this method to be used to define the resident and mobile regions of the pore space the soil 
physical parameters listed in Eqn (44) will be required. These are not always available; in Section 5 
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methods to measure or estimate these parameters are referenced. Also, values of the moisture 
properties for a range of soil textures are given in Appendix 2.  

( - r)/(s - r)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

v /
v m

ax

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m =100
m =10
m = 4
m =1.01

 

Figure 27. Comparison of the relative pore water velocity (v/vmax) with reduced water content (θ - θr)/ (θs - θr) for 
different values of m. A sand is likely to have an m value of 10 whilst a clay will have an m value of 25 or more. At 
a reduced water content of 0.77, the relative pore water velocity for m = 10 has reduced to about 0.1 of the Vmax. 
At m = 4, it has reduced water content of 0.46, at v/vmax = 0.1. 

The minimum travel time (tmin) for a solute to move from the surface to any depth, z, is given by: 

 

/

min
m

m

zt
mK
θ

=       (45) 

 

where 

( ) ( )' /m m r s rθ θ θ θ θ= − −  is maximum reduced water content at which tmin is calculated 

Km is the hydraulic conductivity at 
'
mθ (m s-1).  

An analogy is the time taken by a solute travelling in the fastest stream tube to get from the surface to 
depth z. This means that no solute will reach z before tmin. Eqn (45) could also be used to calculate 
the time it would take for a solute to get to z for stream tubes with any value of 'θ . A comparison of 
tmin for a sandy loam and clay to reach a depth of 0.5 m shows that although the proportion of solutes 
transported are not too different (97% versus 86%) the minimum time for the solutes to travel 0.5 m is 
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very different (Figure 28) due to the difference in mmK  for the two soils of about 3 orders of 
magnitude. 
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Figure 28. Minimum time (tmin) for a solute to reach a depth of 0.5 m calculated with Eqn (45) from saturation 
reduced water content = 1 to an estimate of the reduced water content at the drained upper limit. 

This approach of Scotter and Ross (1994) (Eqn (44)) could be combined with the piston flow model 
(Eqn (35)) or with the MEDLI model to determine the proportion of solute that was mobile when solute 
transport was occurring. It can also be used when drainage is occurring with proportion of solute 

being transferred between boxes reducing as the reduced water content decreases towards the 
'
dulθ . 

3.4. Corwin Bypass model 
A method using a similar solute transport model to MEDLI but using a fixed bypass flow coefficient (γ) 
of 0.5 was used by Corwin et al. (1991). This means that they considered that only 50% of the solute 
(chloride) in the soil was mobile and could be leached. This same modelling approach was used by 
van der Laan et al. (2010) except they used a value for γ of 0.3 for nitrate suggesting that only 30% of 
the water in the soil was mobile. This difference may reflect a difference in the soil rather than the 
solute, as the ‘field capacity’ for the soil used by Corwin et al. (1991) was 0.29 and that of van der 
Laan et al. (2010) is not stated but from their figures would appear to between 0.15 to 0.3 depending 
on the depth. 

The use of a fixed value for the partition of the mobile and resident solute transport would be a 
possible way to improve the solute transport model in MEDLI, and in the first instance a value of 0.5 
as used by Corwin et al. (1991) along with their computational methodology would seem an 
appropriate estimate if no other data were available. This method would also provide a relatively 
simple way to modify MEDLI to accommodate the mobile/immobile concept into MEDLI and if 
combined with the Scotter and Ross (1994) approach to determining the mobile/immobile regions 
would result in a more realistic solute transport model. 
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3.5. Burns Equation 
The Burns equation (Burns, 1975) considers the transport of solute in a soil subject to the net 
infiltration (infiltration less evapotranspiration) of Du(t) where Du is the sum of the net infiltration at 
elapsed time t. Burns (1975) original equation is unsound due to some of the assumptions in it but the 
concept is very useful (Scotter et al., 1993). Towner (1983) found that if the spatial (depth) 
discretisation (∆z) is small compared to Du then the Burns equation can be simplified to: 

 

[ ]( , ) exp / ( )dX z Du z Du tθ= −     (46) 

 

where 

X is the fraction of solute that has leached below depth z at time t since the fertilizer was applied at 
the soil surface 

0
( ) ( ') ( ') '

t
Du t i t Et t dt= −∫  is the net infiltration (m) with i the infiltration rate (m s-1)) and Et (m s-1) is 

the evapotranspiration (Es + T) (see Section 2.3) up to time t and t’ is the dummy variable of 
integration. 

θd is the water content of the mobile region. Burns originally had this as the field capacity water 
content but as Scotter et al. (1993) suggested, this should be treated as an operationally defined 
function. See Section 3.3 above. 

The fraction of solute leached (X) below a depth of 0.25 m with Du for three values of θd shows that as 
θd increases less solute is leached as there is more soil pore volume for the excess water (Du) to be 
stored in (Fig. 29). The fraction of solute leached also increases as the amount of drainage increases. 
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Figure 29. Fraction of surface applied solute leached beyond a) 0.25 m and b) 0.5 m with three values of θd as a 
function of Dw. The curves are calculated with Eqn (46). 

Scotter et al. (1993) also provide solutions for the situation where the soil initially had a concentration 
of C0 (kg m-3) present and is then leached by the water with zero concentration this results in the 
leaching fraction for the solute being given by: 
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    (47) 

 

This solution would be applicable to MEDLI for solutes that were initially present in the soil but not in 
the wastewater.  

For MEDLI, a solution of when the solute is applied in the irrigation water and a solute mass of Mi (kg 
m-2) is applied can be obtained using, (Scotter et al. 1993): 

 

( , ) 1 1 expd d
k k

k k

z zX z Du
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θ θ   

= − + −   
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    (48) 

 

where  

0
( )k kDu Du t Du= −  is the net infiltration since the start of the kth irrigation event (m) 

0kDu  is the net infiltration prior to the lth irrigation event (m). 

Using the principle of super positioning we can then calculate the mass of solute leached beyond any 
depth by: 
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where 

MT(z,Du(t)) is the total mass density of solute leached beyond z (kg m-2) 

Du(t) is the total drainage at time t since t = 0 

Mk is the solute mass density applied in the kth irrigation (kg m-2) 

Csk is the concentration of the solute in the irrigation water during the kth irrigation (kg m-3) 

Irk is the depth of irrigation applied during the kth irrigation (m) 

k is the irrigation index parameter  

n is the total number of irrigations up to time t  

The fraction of the mass applied and initially present in the soil that has been leached beyond the 
depth z is given by: 
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     (50) 
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where ZT is the depth to bottom of the model domain (m). When z = ZT in Eqn (50) then this is the 
fraction of the mass of solute leached out of the soil. 

The concentration as a function of Duk and z can also be calculated using the principal of super 
positioning by: 
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where k is the index for the number of irrigation events with a total number of n events by time t. In 
Eqn (51) when k = 1, Du0 = 0 as this will be the first irrigation event and so no drainage prior to t = 0 
has occurred.  

This approach could be incorporated into MEDLI with the leaching fraction solutions (Eqns (47, 48 50 
and 51) used with bottom depth of the modelling domain to give the fraction of solute mass leaching 
out of the soil to deep drainage. This would require summing the fractional loss for each irrigation 
event. Magesan et al. (1999) used the Burns equation approach described here to successfully model 
chloride, tritium and nitrate in cores and a tile drained field but was less successful in modelling 
bromide in the field. 

The concentration as a function of depth could be calculated from Eqns (49) and (50) either using the 
mid-point depth of the boxes in MEDLI or the top and bottom depths and then averaging the 
concentration. 

There are some problems with the use of the Burns approach in MEDLI. The main issue is that the 
analysis assumes that the solute is conserved within the soil. For nitrate, this implies that no losses 
occur due to transformations (e.g., denitrification or plant uptake), and no additions occur due to 
nitrification from ammonia. 

The above equations do not consider retarded solutes but multiplication by the retardation factor 
would allow retarded solutes to be modelled. For layered soil profiles the value of θd could be different 
between the layers, but it is trivial to modify the equations to account for this. For a two layered soil 
this would modify zθd in the above equations by: 

 

( )
1 1

1 1 1 2 1

, 0
,

d d

d d

z z z z
z z z z z z
θ θ
θ θ θ

= < ≤

= + − <
    (52) 

 

where  

z1 is the depth of layer (m) 

θd1 is the value of θd for layer 1 

θd2 is the value of θd for layer 2. 

The Burns equation approach only requires knowledge of one soil factor θd which makes it attractive. 
This could be obtained either using the approach given in Section 3.3 or by allowing θd = θdul. 
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4. Discretization of Water and Solute Transport and Sequence 
of Calculation 

The transport of water and solutes are coupled by the velocity of the water in the soil pores, which 
moves the solutes through the soil profile. This has been shown in Section 3. The order in which the 
various processes are solved will influence the results especially for drainage. 

 

Figure 30. Schematic diagram of water transport in a box model. I is the infiltration, Es is the soil evaporation, RO 
is runoff, T is the transpiration and Dw is drainage. Dz is the thickness of the boxes and z is the depth to the 
bottom of a box. 

The processes for water transport are illustrated in Figure 30 with infiltration entering through the first 
box. For the Green and Ampt model, infiltration could be added to multiple boxes depending on the 
model time step. Es is the soil evaporation, which comes only from the first two boxes. Water uptake 
will occur from all the boxes (that contain roots) until the transpiration demand is met. Drainage (Dw) 
occurs between the boxes, but only when the water content is greater than the drained upper limit. 
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The sequence of solving is suggested as follows: 

• Added infiltration into the soil profile. The Green and Ampt model as given in Section 2.1.3.1 
is suggested as the best approach. However, the GA method will require a smaller time step 
than 1 day if it is to be implemented. The use of the GA method should not be difficult to 
implement for irrigation events as the surface application rate and the application time is 
known. However, for rainfall this could be more difficult to implement as often only daily 
rainfall will be known. The daily rainfall data could be disaggregated to give the necessary 
duration and intensity data using the method of Connolly et al. (1998). Alternatively, a hybrid 
approach could be implemented with the GA method used for the irrigation events and the 
present Curve Number approached used for rainfall. 

• Calculate the runoff. The method if the hybrid infiltration model was used would calculate 
runoff as given in Section 2.1.6 for irrigation events and use the curve number for rainfall 
events. 

• Calculated soil evaporation and transpiration as given in Section 2.3. 
• Calculate drainage by the Sisson method as suggested in Section 2.2 and Appendix 3. 
• Update the water content in each box. 
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The water transport should be solved before calculating the solute transport. The processes for solute 
transport are given in Figure 31. 

Figure 31. Schematic diagram for solute transport in a box model. Ic is the solute that enters the soil via 
infiltration, V is volatilisation of solutes such as nitrous oxides and ammonia, P is uptake by plants and m is 
microbial transformations and mineralisation immobilisation processes (kg s-1). 

Infiltration of effluent will introduce new solutes into the model domain. Volatilisation from the soil is 
likely to be small unless urea is added in the effluent. Oxides of nitrogen will volatilise if denitrification 
occurs and are assumed to be lost to the atmosphere and has been shown in Figure 31. 

Plant uptake of dissolved solutes will occur in the transpiration water. Microbial transformations and 
mineralisation/immobilisation processes will result in gains or losses to the nitrogen pool. 

The easiest way to modify the solute transport in the present MEDLI model would be to only allow the 
solute in the mobile pore space to be transported during drainage. The simplest way to do this would 
be to adopt the split suggested by Corwin et al. (1991) and have only 50% of the solute mass in a box 
available for transport and adopt the methodology of Corwin et al. (1991). This would require only a 
minimal recoding of the MEDLI model and the computational methodology is well set out by Corwin et 
al. (1991). 
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The Burns solute transport model (Section 3.5) would seem the easiest to implement but it does not 
have the ability to incorporate plant uptake and gains and losses. However, since time is incorporated 
into the model via the net infiltration parameter Du it would be possible to modify the concentration at 
a depth by the cumulative gains or losses up to this time. The Burns model would be particularly easy 
to implement for the deep drainage loss at the bottom boundary of the model domain.  

The value of mobile water content region for solute transport (θd) should be calculated with the Scotter 
and Ross (1994) approach if the data is available, otherwise the drained upper limit θdul could be used 
as an estimate. The present approach in MEDLI which assumes all solute is displaced by the 
infiltrating solution will overestimate leaching. 

With regard to the development of upgrades the recommendations are: 

1. Implement the Corwin et al. (1991) methodology with 0.5 as the bypass flow coefficient. If the 
data is available use the Scotter and Ross (1994) method to alter the proportion of the flow in 
the mobile region. 

2. The Burns equation should be further considered but will require modification to account for 
gains and losses of solutes. The methodology provided in this report is a first step to 
implement this but may overestimate the concentrations and leaching losses as these 
assume that the net losses and gains is zero. The Burns equation may be a particularly good 
approach for determining the leaching of solutes beyond the bottom boundary of the model 
domain. 

5. Data required and measurement methods or estimation 
In order to use the methods described in this report certain soil properties will be needed. These can 
(best) be derived from measurements or estimated from pedo-transfer functions. The ASRIS 
(www.asris.csiro.au) soil data base is also available and information can be obtained from this. In 
Queensland the SALI (https://www.data.qld.gov.au/dataset?organization=environment-and-
science&q=soils&sort=score%20desc%2C%20metadata_modified%20desc) has data that could be 
used along with pedo-transfer functions to obtain some of the data required to use the pedo-transfer 
models. The minimum required data are: 

1. Saturated hydraulic conductivity, Ks. If the GA model is used for infiltration and the soil is bare 
some account of the surface sealing (reduction in Ks) will be required. Information on this can 
be found in Connolly et al. (1997; 2001). 

2. The air entry potential or bubbling pressure of the soil, ψb 
3. Slope of the relationship between water content and matric potential, λ 
4. Saturated water content, θs  
5. Residual water content, θr. This is the water content at which capillary flow of water is 

deemed to have ceased. 
6. Water content at the drained upper limit (field capacity), θdul  

The saturated hydraulic conductivity can be measured by a variety of methods and their pros and 
cons are given by Mckenzie and Cresswell (2002) along with a description of the other methods in the 
book by (Mckenzie et al. 2002).  

The water content parameters can be derived using laboratory methods on undisturbed soil samples 
(Cresswell, 2002). The value of θs can be derived for the topsoil when Ks measurements are being 
made. The two-point method proposed by Cresswell and Paydar (1996) with measured matric 
potential points of -1.0 and -150 m and either bulk density or saturated water content would provide a 
method that is not too time consuming nor expensive. 

The hydraulic conductivity can be measured with a number of methods in the field and laboratory (see 
various chapters in Mckenzie et al. 2002) and Cook et al. (2007) and Cook and Broeren (1994). 
Relatively rapid field methods such as those of Vandervaere (2000), the sorptivity method in Cook 

http://www.asris.csiro.au/
https://www.data.qld.gov.au/dataset?organization=environment-and-science&q=soils&sort=score%20desc%2C%20metadata_modified%20desc
https://www.data.qld.gov.au/dataset?organization=environment-and-science&q=soils&sort=score%20desc%2C%20metadata_modified%20desc
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and Broeren (1994) or the Beerkan method (Bagarello et al., 2017) would be useful in obtaining 
hydraulic conductivity measurements. 

Methods to predict the hydraulic properties of soils from simpler soil measurements (texture, soil 
cation exchange capacity, -15 bar moisture content etc.) are called pedo-transfer functions (PTFs), 
and have been summarised by Cook and Cresswell (2007). These methods are improved if one or 
more water content - matric potential pairs are available. Recently Zhang and Schaap (2017) have 
released a newer version of the Rosetta PTF (http://www.u.arizona.edu/~ygzhang/rosettav3/), which 
they claim is an improvement on earlier versions. PTFs often have a large uncertainty associated with 
the estimated soil physical properties, especially hydraulic conductivity. There is also a large degree 
of uncertainty in measured soil physical properties especially at the spatial scales where MEDLI will 
be applied, so the use of PTFs to obtain soil physical properties for MEDLI modelling may be 
acceptable. 

6. Conclusions  
This report considers how developments in soil physics for water entry, storage and drainage could 
be included to provide incorporation of more physically based models for water transport in the MEDLI 
model. This analysis suggests that the Green and Ampt infiltration model with the implicit solution of 
Barry et al. (1995, 2005) along with the time to ponding model of White and Broadbridge (1988) (Eqn 
(16)) and the time-compression analysis of Salvucci and Entekhabi (1994), could result in a physically 
based infiltration/runoff model (see Appendix 1). This new infiltration/runoff model will almost certainly 
require the time step of the MEDLI model to be less than 1 day when infiltration is occurring. The 
model has been extended to nonuniform soil water content profiles and soil physical properties using 
the methods of Bouwer (1969). Testing of this new model against the CN infiltration/runoff model in 
MEDLI should be a first step in any evaluation. 

For drainage, two models are presented: one from Sisson et al. (1980) that relies on gravitational 
(free) drainage from an initially saturated or uniformly wet soil profile, and the other from Youngs 
(1960) that uses the Green and Ampt approach, which assumes that a shallow water table is present. 
For MEDLI the more likely situation is free drainage so the Sisson et al. (1980) model is suggested.  
This model works well for uniform initial conditions and soil physical properties and has been adapted 
in this report to non-uniform initial conditions and soil physical properties. In order to use this model a 
timer to be set when drainage first starts in the soil profile will be required. The analysis here also 
shows that all cascading box models are highly dependent on the time step and are unreliable. 

The root water uptake models introduced here use the Feddes type modelling approach to determine 
the uptake potential and combined with a depth weighting function developed from the McAneney and 
Judd (1983) study should provide a way to provide a physically based transpiration and evaporation 
model. 

The solute transport models based on Corwin et al. (1991) would be the simplest to implement in 
MEDLI and when combined with the partitioning model of Scotter and Ross (1994), should provide an 
improved methodology that is only slightly more complicated than that currently used in MEDLI. 
Alternatively, just using the partitioning model of Scotter and Ross (1994) with the present MEDLI 
model would be a good first step. The Burns equation would provide a good method for estimating 
leaching loss to deep drainage but will need to be modified to account for gains and losses of solutes 
due to plant uptake and soil transformational processes. 

This report has put forward a number of methods that could be used to have more physically based 
methods implemented in MEDLI. Unfortunately, time has not allowed for the comparison and 
evaluation of the different methods, but this should be done before their implementation in MEDLI. 

http://www.u.arizona.edu/%7Eygzhang/rosettav3/


 

MEDLI science review: Modelling of water and solute transport in MEDLI  |  Final report 
64 

7. Recommendations for future actions and investigation 
A number of issues relevant to this report were identified but could not be addressed within the time 
frame provided. These are listed here as recommendations for future investigations. 

 

1. RUNOFF 

The runoff predictions from CN and Green and Ampt should be compared against data from a range 
of soil types under irrigation to determine if Green and Ampt approach could provide a significantly 
better estimate of runoff from irrigated soils than CN. This comparison study should use the White et 
al. (1989) method for calculating tp. 

Such a study is necessary because King et al. (1999) found that GA was better than CN at the daily 
time scale, where CN underestimated runoff. The GA model was considered to give better results 
when the duration and intensity was included in the daily estimates of runoff. More recently Ficklin 
and Zhang (2013) indicate that the CN was better at predicting runoff in a catchment than GA. The 
GA overestimated the runoff in small events but gave better results than CN method for large events.  

However, these papers use the Mein and Larson (1973) method for calculating time to ponding (tp). 
This would create a bias in the results for small storms, which is what the authors found. So the 
comparison study should use the White et al. (1989) method for calculating tp. 

 

2. DRAINAGE  

The deep drainage predictions from cascading bucket models should be compared with Sisson et al. 
(1980) model predictions using data from irrigated soils to determine if the Sisson approach could 
provide a significantly better estimate of deep drainage. It may also be worth exploring if the K- 𝜽𝜽 
function could be to better inform the Drainage Factor parameter used in cascading bucket models 
and so improve their performance in predicting deep drainage. 

 

3. SOLUTE LEACHING 

Comparison and evaluation of the different methods proposed (Corwin et al. (1991), Scotter and Ross 
(1994) and Burns Equation should be done before their implementation in MEDLI. 

Consideration of more complex models such as SWIM (in APSIM) has pros and cons.  The pros are 
this will be more accurate because the drainage flux will be better calculated using the Richards 
equation, so long as the parameters used in it are correct.  

The cons are that this will require both the K-θ and ψ-θ relationships and these are often not available. 
The K-θ and ψ-θ relationships can be estimated using pedo-transfer functions. As SWIM solves the 
advection dispersion equation (ADE) to determine solute transport, it is considerably more 
complicated than what is proposed here. It will be slower to run as it will use much smaller time steps 
and soil layer depth increments to avoid oscillation and mass balance problems. Adoption of SWIM 
will require greater knowledge and skill in running numerical models. 

The utility of the simple approach of assuming piston flow leaching of solutes between soil layers with 
partial or complete mixing is that it is simple to calculate. 

 

Performance for modelling solute leaching in irrigated soils should be considered. 

The Transfer function model has been used for practical modelling in irrigated soils, but only at 
experimental sites. 
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4. OBTAINING INPUT PARAMETER VALUES 

Simple methods of determining the K-θ and ψ-θ relationships for soils could be compared and 
validated. There are a number of reviews on this topic in the literature and such a comparison for 
Australian soils has been done (Minasny and McBrateney, 2000). 

Such a study could consider measuring bulk density and particle size analysis of each soil layer and 
then using pedo-transfer functions to estimate the soil properties. This study would build on what has 
been done by Minasny and McBrateney (2000) and Cook (2017). 

Neil Huth (Huth et al., 2012) method for estimating 𝝭𝝭- 𝝷𝝷 and K- 𝝷𝝷 involved using spline functions to 
determine for the moisture content at any matric potential from measurements at four points: 
saturation, drained upper limit, lower limit and oven dry. They estimated the hydraulic conductivity 
from these moisture data points and measurements of the saturated hydraulic conductivity and matric 
hydraulic conductivity. In order to use their methods these measurements would be required. 

 

5. IMPLICATIONS OF ISSUES IDENTIFIED 

Implications of the issues identified in this report are summarised and provided in Table 1. 
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 Table 1. Strategic overview of the issues and implications raised by this review.  

Model 
Process 

Issue(s) identified Current handling Proposed 
alternative(s) 

Implications Degree of difficulty Importance  Recommendation 

Infiltration/ 
Runoff 
quantity  

Curve number (CN) – 
Dryland only, not tested 
under irrigation. 

 

Datasets underlying model 
testing limited to heavy 
textured soils. 

 

 

CN used as a pragmatic 
solution in most daily 
time-step hydrological 
models 

Green & Ampt (G&A) 
improved with better 
approach to calculating 
time to ponding, be 
considered to replace 
CN.  

 

 

 

Can’t be adopted 
immediately into MEDLI. 
Need to compare the 
improved GA model with 
the CN model before the 
infiltration model in MEDLI 
is changed.  

Proposed G&A model will 
require the rainfall input to 
be at a time step of less 
than 1 day. and also 
requires additional 
parameters for each soil 
horizon: 

• Sub-daily rainfall 
data 

• Lambda – defines 
relationship between 
water content and 
matric potential. 

• Sorptivity – a 
measure of the how 
rapidly a dry soil is 
wetted due to 
capillarity only. 

• Air-entry matric 
potential 

 

Currently high, as limited 
resources to adapt the 
model; Limited 
availability of datasets 
(with the exception of 
sub-daily rainfall for 
many areas), Limited in-
house soil physics 
expertise 

Infiltration is a key 
factor in 
determining deep 
drainage and 
solute transport 
and if incorrectly 
handled, will have 
significant 
implications reef 
models. 

 

Investigate need and 
develop a detailed case 
for dedicated 
resource(s) to: 

Adapt G&A model to 
non-uniform soils and to 
develop datasets for 
new parameters using 
pedo-transfer functions 
(PTFs) where possible 
which will need to 
involve both field studies 
and “mining” of the soil 
physics literature. 
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Model 
Process 

Issue(s) identified Current handling Proposed 
alternative(s) 

Implications Degree of difficulty Importance  Recommendation 

Deep drainage The prediction of drainage 
in the soil by MEDLI and 
other cascading box 
models is dependent on 
the thickness of the soil 
layers chosen and time 
step used in the model. 

The draining profile shape 
is also unrealistic. 

Hence, daily cascading 
box models poorly 
represent actual drainage. 

Also, the order of 
calculation of the drainage 
and evaporation process 
can affect the drainage if 
they are implemented 
sequentially 

Datasets underlying model 
testing limited to heavy 
textured soils – possibly 
under rain-fed conditions. 

Cascading bucket using 
daily time-step where 
the drainage factor 
(proportion of drainable 
water draining) is 
calculated using an 
exponential function 
based on the saturated 
hydraulic conductivity 
and drainable porosity of 
the soil layer.  

As such, the drainage 
factor has no real 
physical meaning.  

Consider using the 
Sisson model, based on 
gravitational drainage 
(must have no shallow 
water tables). 

 

NOTE: shallow water 
tables are unlikely to be 
modelled by MEDLI. 

 

Refer Appendix 3  

Sisson model requires 
additional parameters as it 
is based on the K-𝝷𝝷 
function, but these may be 
able to be estimated from 
known parameters. 

Sisson method assumes 
that at the soil surface, the 
water content reduces to a 
specified value (less than 
DUL) as drainage 
proceeds. A value of 0.83 
x DUL may be suitable but 
this will need to be 
checked by comparison 
with numerical models 
such as HYDRUS1D. 

Currently high, proposed 
Sisson model not 
currently built or tested. 

 

Limited resources to 
adapt the MEDLI model  

 

Limited availability of 
datasets (with the 
exception of sub-daily 
rainfall for many areas)  

 

Limited in-house soil 
physics expertise 

High  

 

Investigate need and 
develop a detailed case 
for dedicated 
resource(s) to: 

• Adapt Sisson 
model to non-
uniform soils  

• Develop datasets 
for new parameters 
using pedo-transfer 
functions (PTFs) - 
methods to predict 
the hydraulic 
properties of soils 
from simpler soil 
measurements - 
where possible 
which will need to 
involve field 
studies. 

 

Root water 
uptake 

MEDLI transpiration 
algorithm does 
progressively reduce root 
water uptake as plant 
available soil water 
approaches zero. 

Partitioning of potential 
transpiration favours 
wetter layers and 
excludes layers with no 
plant available water. 
The upper two soil 
layers are also weighted 
more heavily as these 
layers will contain more 
roots. The actual 
transpiration from each 
layer is then limited to 
the amount of plant 
available water stored in 
that layer.  

Feddes model uses a 
bent stick approach with 
two zones–  

• for near saturation/ 
aeration limitation.  

• for when soil dried 
below a specified 
limit.  

Relatively easy to adopt 
into MEDLI. Will need 
extra parameter for the 
soil lower water content 
threshold. 

 

Note: Transpiration and 
soil evaporation will affect 
drainage predictions. 
Order of calculations 
important 

Low. Improves 
transpiration 
modelling in 
schemes where 
irrigation is well 
below irrigation 
demand. 

 

Include in current 
planning for model 
development with 
current resources  
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Model 
Process 

Issue(s) identified Current handling Proposed 
alternative(s) 

Implications Degree of difficulty Importance  Recommendation 

Soil 
evaporation 
for soils with 
dead cover 
(crop 
residues) 

MEDLI poorly models the 
impact of crop residual 
cover on soil evaporation.  

 

 

 

The fraction of soil 
surface with any cover 
(transpiring or non-
transpiring) is deemed to 
show zero soil 
evaporation. 

The residual cover 
function from 
HOWLEAKY? should be 
considered/adopted to 
account for the mass of 
residual dead plant 
material reducing soil 
evaporation. 

Relatively easy to adopt 
into MEDLI. No new 
parameters would be 
required. A “Desorptivity” 
parameter is equivalent to 
“CONA” used in MEDLI.  

Improved soil evaporation 
modelling in schemes 
where residual cover 
occurs following crop 
removal or as plant 
canopy regrows following 
harvest.  

Moderate as some 
further investigation into 
the HOWLEAKY 
residual cover function is 
required.  

However, adoption into 
the MEDLI model 
appears straight forward 

Moderate to high 

Transpiration and 
soil evaporation 
will affect irrigation 
demand and 
drainage 
predictions. Order 
of calculations 
important 

Consider including in 
current planning for 
model development 
subject to availability of 
resources  

Soil 
evaporation 
from bare soil 

MEDLI does not model re-
wetting of soil surface 
towards the second soil 
moisture content in the 
absence of rain or 
evaporation, potentially 
underestimating soil 
evaporation from bare 
soils. 

Ritchie (1972) 
evaporation algorithms 
are used to estimate soil 
evaporation which is 
then subtracted from the 
water content of the top 
two soil layers. Upward 
flux is ignored. 

Force-restore method 
proposed by Cook et al. 
(2008). 

As bare soil scenario 
would be rarely modelled 
within MEDLI, the extra 
complication may be 
unwarranted. 

Moderate – need for 
investigation 

Low Consider including in 
current planning for 
model development 
subject to availability of 
resources 

Plant cover 
factor 

Sutanto et al. 2012 
calculates a plant cover 
factor from LAI uses Beers 
law with an extinction 
coefficient of -0.463 while 
MEDLI uses and extinction 
coefficient of -0.65. 

In the pasture model, 
MEDLI uses a sine 
curve function of plant 
transpiring cover over 
thermal time. The 
transpiring cover, 
expressed as the 
proportion of soil area is 
then used to calculate 
potential transpiration. 

The crop module taken 
from EPIC uses LAI 
which is converted to 
transpiring cover using 
Beers law with an 
extinction coefficient of -
0.65. 

Plant cover function of 
Sutanto et al. (2012) 
(used in HYDRUS1D) 

This would apply to the 
crop module.  

 

 

 

Moderate as some 
further investigation into 
the Sutanto model is 
required.   

Adoption into the MEDLI 
model appears straight 
forward. 

Need further 
investigation of LAI on 
evaporation with 
measured data. 

 

Transpiration and 
soil evaporation 
will affect irrigation 
demand and 
drainage 
predictions. Order 
of calculations 
important  

Consider including in 
current planning for 
model development 
subject to availability of 
resources 
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Model 
Process 

Issue(s) identified Current handling Proposed 
alternative(s) 

Implications Degree of difficulty Importance  Recommendation 

Solute 
Transport 

Simple piston-flow model 
assumes all the existing 
soil water with its 
dissolved solutes is 
displaced by the infiltrating 
solution, hence 
overestimating leaching. 

For a model such as 
MEDLI, the development 
of the actual shape of the 
solute distribution may not 
be as important as 
calculating where the 
solute front is. 

Simple piston-flow 
model  

Adopt Corwin et al. 
bypass model (uses 
mobile/ immobile 
concept) + Scotter & 
Ross (1994) to 
determine 
mobile/immobile regions 
for a more realistic 
solute transport model.  

The solute would be 
transported in the mobile 
pore space during 
drainage. Adopt the split 
suggested by Corwin et 
al. (1991) and have only 
50% of the solute mass 
in a box available for 
transport. 

And/or 

The Burns equation 
could be incorporated 
into MEDLI using the 
leaching fraction 
algorithms to give the 
fraction of solute mass 
leaching out of the 
bottom boundary of the 
soil model domain to 
deep drainage. 

 

. 

This would require only a 
minimal recoding of the 
MEDLI model and the 
computational 
methodology is well set 
out by Corwin et al. 
(1991). 

 

Extra parameters include 
a fixed bypass flow 
coefficient for the soil. 

 

 

 

 

 

The Burns equation works 
on cumulative drainage 
and either a uniform profile 
or pulse input. Unlike the 
Corwin et al. model, It 
would be more difficult to 
incorporate into MEDLI’s 
bucket model approach.  

The Burns equation also 
assumes that the solute is 
conserved within the soil 
(does not allow for plant 
uptake and gains and 
losses of solutes from 
mineralisation/ 
immobilisation). However, 
it may be possible to do 
this with a time-based 
function, but this would 
have to be investigated 
further 

Moderate as the Corwin 
model is well described 
and the Burns equation 
is also easily 
implemented. 

 

 

 

 

 

 

 

Equations need 
explanation for 
implementation. 

 

The Burns equation 
approach only requires 
knowledge of one soil 
factor (the water content 
of the mobile region). 

High Investigate need and 
develop a detailed case 
for dedicated 
resource(s) to: 

Develop solute transport 
model and to develop 
datasets for new 
parameters using PTFs 
where possible which 
will need to involve field 
studies. 
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Model 
Process 

Issue(s) identified Current handling Proposed 
alternative(s) 

Implications Degree of difficulty Importance  Recommendation 

Runoff 
Quality* 

Need to estimate 
dissolved P concentration 
and hence P loss in runoff 
from effluent irrigation 
areas. 

No attempt to model 
quality of runoff water. 
MEDLI will indicate any 
effluent-sourced P lost in 
runoff if the runoff is 
likely to contain effluent. 

A relationship between 
soil solution P and soil 
Colwell-P and 
Phosphorus buffer index 
could be used to 
estimate runoff P 
concentration 

Cannot be adopted 
immediately into MEDLI. 

 

This will need further 
development and testing 
against field data 

Currently high, due to 
requirement of 
investigations and due 
to limited resources.  

 

 

High.  

P loss in runoff is 
of greater concern 
than P leaching 
losses in most 
soils (with the 
exception of sandy 
soils) 

Investigate need and 
develop a detailed case 
for dedicated 
resource(s) to: 

Field trials/data needed; 
Soil Chemist input 
needed 

Denitrification* No denitrification model 
has been validated against 
datasets. 

Models assume a potential 
denitrification rate for the 
soil (depends on soil pH 
etc) which can then be 
scaled back within the 
model according to soil 
water content (> DUL) and 
temperature and soil 
carbon. This potential 
value needs validation. 

 

 

A first order kinetic 
equation between 
nitrate-N and 
denitrification per mass 
soil per day is assumed 
which is suitable for high 
strength effluents. The 
potential denitrification 
rate is defined by the 
user for the soil but uses 
10%/day as default. This 
is scaled back according 
to soil water content (> 
DUL) and temperature 
and presence of labile 
soil carbon. 

Approaches used in 
APSIM and DairyMod 
and others need to be 
reviewed in the light of 
data. 

 

 

 

 

 

 

 

Cannot be adopted 
immediately into MEDLI. 

 

 

 

 

 

 

 

 

 

Limited availability of 
datasets. 

Uncertainty of 
predictions from such an 
approach could be high 
(e.g., see Cook et al 
2019; Wallach et al 
1990). 

 

High 

Denitrification is a 
poorly estimated in 
the nitrogen mass 
balance. It 
represents a 
possible legitimate 
sink for nitrogen 
during effluent 
irrigation. 

Investigate need and 
develop a detailed case 
for dedicated 
resource(s) to: 

Field trials/data needed 
(see Beggs et al. 2011 
for a good review and 
method); Soil Chemist 
input needed 

Soil organic 
carbon 
specification 

The current MEDLI suite 
of lab analysis only offers 
to measure OC in topsoil 
layer. 

 The need to specify the 
full thickness of organic 
carbon layer in the soil 
rather than just use the 
default value could be 
made more explicit? 

    

 

* From QWMN MEDLI Science Review Report by Phil Moody. 
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Appendix 1. Solutions for infiltration into non-uniform initial 
conditions and layered soils 
A1.1 Prior to ponding 
Prior to ponding the cumulative infiltration into the soil is given by: 

 

0
( ) ( )

t
I t R t dt= ∫      (A1) 

 

I(t) is the cumulative infiltration (m) 

t is time (s) 

R(t) is the rainfall rate (m s-1) 

Consider a soil consisting of n layers with thicknesses of Dz1, Dz2, … Dzn and corresponding water 
content storage volumes of ∆θ1, ∆θ2, … ∆θn (Figure 32). When the piston wetting front is at the bottom 
of the first layer the cumulative infiltration will be I1 = Dz1∆θ1. This cumulative infiltration must equate 
to the value of I(t1) given by Eqn (A1) at the time t1 when the piston is at the bottom of layer 1 so that: 

 

1

1 1 10
( ) ( )

t
I t R t dt Dz θ= = ∆∫      (A2) 

 

To obtain the time that the wetting front reaches the bottom of the second and subsequent layers we 

follow the procedure used by Bouwer (1969). Firstly, we calculate the fictitious time, 
'
1t , for the wetting 

front to reach the bottom of the first layer but now with the water content storage of layer 2 (∆θ2) by 

substituting ∆θ2 for ∆θ1 in Eqn (A2). Then we calculate the fictitious time, 
'
2t , for the wetting front to 

reach the bottom of layer 2 as: 

 

( )
'
2'

2 1 2 20
( ) ( )

t
I t R t dt Dz Dz θ= = + ∆∫      (A3) 

 

The difference between 
'
2t  and 

'
1t  is the time it will take for the wetting front to move through layer 2. 

Thus, we can calculate the actual time, t2, the wetting front reaches the bottom of layer 2 as: 

 

( )' '
2 1 2 1t t t t= + −     (A4) 

 

The infiltration at t2 is the I(t2) or I2 = Dz1∆θ1 + Dz2∆θ2. This procedure can be repeated for all layers 
until ponding occurs or the rainfall ceases.  
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Figure 32. The left-hand diagram is a schematic of the spatial discretisation and showing the wetting front depth 
zp as being in box k. The right-hand diagram is a schematic of the soil profile with soil horizon of thickness Lx. 

A1.2 Time to ponding 
The non-uniformity of the water content will also affect the calculation of the time to ponding (tp). At tp 
H = 0 and substituting Eqn (9) into Eqn (16) and using M = 0.55 gives: 

 

( )
1.1 ln ( )

( )
p

p p f p p
p s

R t
R t I t

R t K
θψ

 
= ∆ = 

−  
   (A5) 

Infiltration into each box needs to be tested to determine in which layer the wetting front is when 
ponding occurs. The box in which this occurs, k, will be the one where: 

 

( )( ) 1.1 ( ) ln
( )

k
k k k f

k s

R tR t t k
R t K

θ ψ
 

> ∆  − 
    (A6) 

 

 

The time when ponding occurs can be calculated using Eqn (A5) with ∆θ = ∆θk. This will have to be 
achieved by using an iterative procedure like Newton-Raphson with a good starting value being tp =(tk 

+tk-1)/2. The cumulative infiltration at the time of ponding is p p pI R t=  and the depth of the wetting 

front at tp (zp) is given by: 
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p p i i k i
i i

z I Dz Dzθ θ
− −

= =

 = − ∆ ∆ +  
∑ ∑    (A7) 

where 

i is the index counter for the box. 

If the soil hydraulic properties change at some depths L1, L2, … Lm then this also needs to be 
accounted for. If zp ≤ L1 then Eqn (A6) is correct with Ks the value of the soil for horizon 1. When zp is 
in horizon 2 then then the harmonic mean ( K ) must be used for Ks in Eqn (A6) given by: 
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When zp is at some depth where the wetting front has passed through u soil horizons then the value 
of ( K ) is given by: 
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where K1 and K2 are the Ks of the soil properties above and below L. This can be used for more than 
two soil horizons by calculation of K  for the number of soil horizons that are wetted. 

The above analysis will only be required if ponding occurs at the soil surface. If ponding does not 
occur, then the infiltration rate (i) is the rainfall rate (R) and the cumulative infiltration is: 

 

0
( ) ( )

t
I t R t dt= ∫      (A10) 

 

where t is the time it has been raining for. The depth of wetting (zw) will be in box k given by: 

 

1 1
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( ) ( ) /
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w i i i k
i i

z t Dz I t Dz θ θ
− −

= =

 = + − ∆ ∆  
∑ ∑    (A11) 

 

A1.3 Green and Ampt Model 
Once ponding has started the GA model can be used to determine the further movement of the 
wetting front through the soil. The time to the bottom of the kth box where the wetting front is when 
ponding occurs can be calculated using the method proposed by Bouwer (1969). The implicit form of 
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the GA model (Eqn (7)) is the easier to use for solving for nonuniform soils. The fictitious time for the 
time to ponding is calculated by: 
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   (A12) 

 

and the fictitious time to the bottom of the kth box is: 
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The real time to the bottom of the kth box is then ( )' '
1k k k pt t t t−= + − . For the next box we can 

calculate the fictitious time to the top of the box as: 
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And to the bottom of the k+1 box as: 
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The real time to the bottom of the kth box is then ( )' '
1 1k k k kt t t t+ += + − . For subsequent boxes the 

same procedure is used until the infiltration event is completed. For the last box if infiltration reaches 
the bottom of the box, then any further infiltration goes out the bottom of the box to deep drainage. 

A spreadsheet with examples has been provided to assist with implementation of the methods 
described in this report. 
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Appendix 2. Soil Properties used in Examples. 
The soil properties used in the examples in the text. 

Table A2. Soil physical properties for a clay soil from Salvucci and Entekhabi (1994), sandy loam soil from Clapp 
and Hornberger (1978) and clay loam soil from Sisson et al. (1980)). λ is the slope term and ψb is the air entry 
matric potential in the Books and Corey moisture retention function.  

Parameter Salvucci & 
Entekhabi 

Clapp & Hornberger Sisson 

Soil Clay Sandy Loam Clay loam 

Saturated Hydraulic 
Conductivity (Ks)  

(mm day-1) 

29 2995 1000 

Saturated water content (θs) 0.45  0.435 0.52 

Pore size distribution term (λ) 0.44 4.9 0.625 

Air entry water potential (ψb) 
(mm) 

-900 -218 - 

Initial water content (θi) 0.1 0.15 0.52 

Sorptivity calculated with Eqn 
(9) (S) 

1.4 (mm day-1/2) 391 (mm day-1/2) - 
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Table A3. Representative values of hydraulic parameters (standard deviations in parentheses) (From Table 2 of Clapp and Hornberger (1978). Note the soil texture is based on 
the USDA particle size ranges. The values of m = 2λ + 3 are calculated here. 

Soil Texture Clay (%) λ m ψb (m) θs (m3 m-3) Ks (m s-1) S (m s-1/2) 

Sand 3 4.05 (1.78) 11.10 (6.56) 0.121 (0.143) 0.395 (0.056) 7.33x10-6 4.01x10-4 

Loamy sand 6 4.38 (1.47) 11.76 (5.94) 0.09 (0.124) 0.410 (0.068) 6.51x10-6 2.74x10-4 

Sandy loam 9 4.90 (1.75) 12.80 (6.50) 0.218 (0.31) 0.435 (0.086) 1.44x10-6 2.71x10-4 

Silt loam 14 5.30 (1.96) 13.60 (6.92) 0.786 (0.512) 0.485 (0.059) 3.00x10-7 3.32x10-4 

Loam 19 5.39 (1.87) 13.78 (6.74) 0.478 (0.512) 0.451 (0.078) 2.90x10-7 1.83x10-4 

Sandy clay loam 28 7.12 (2.43) 17.24 (7.86) 0.299 (0.378) 0.420 (0.059) 7.08x10-8 1.29x10-4 

Silty clay loam 34 7.75 (2.77) 18.50 (8.54) 0.356 (0.378) 0.477 (0.057) 1.02x10-7 8.17x10-5 

Clay loam 34 8.52 (3.44) 20.04 (9.88) 0.63 (0.51) 0.476 (0.053) 3.00x10-7 1.42x10-4 

Sandy clay 43 10.4 (1.64) 23.80 (6.28) 0.153 (0.173) 0.426 (0.057) 9.03x10-8 5.88x10-5 

Silty clay 49 10.4 (4.45) 23.80 (11.9) 0.49 (0.621) 0.492 (0.064) 4.31x10-8 6.38x10-5 

Clay 63 11.4 (3.70) 25.80 (10.4) 0.405 (0.397) 0.482 (0.050) 4.86x10-8 7.06x10-5 
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Appendix 3. Drainage for Non-uniform Soil Profiles. 
For drainage following infiltration where the whole profile has been wetted to saturation is given in 
Section 2.2.  When the wetting front does not wet the whole profile then there will be a step change in 
the water content at some depth zf. This means that the water draining from the saturated part of the 
soil profile will result in wetting of the soil below depth zf. Other non-uniformity arises if there is a 
change in soil properties with depth. The models presented in Section 2.2 need to be modified to 
account for this. 

A3.1 Sisson Model 
At the end of infiltration, the depth of the wetting front zf will be in some soil box (x). The amount of 
water in the soil above zf at the start of drainage, W0, is then: 

 

0 0
( , ) fz

fW z t dzθ= ∫      (A15) 

 

where  

t0 = zf/A is the time when drainage commences at zf. Prior to t0 the water draining from above maintains 
the water content at the saturated or initial value. 

A is given in Eqn (20) 

The water stored in the profile to zf at t0 can be calculated by: 
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The amount of water having drained from the soil profile at t0 is then given by: 

 

0 00
( , )fz

s fW dz W z tθ∆ = −∫     (A17) 

 

This drained water will be transported down the soil profile to a depth given by: 

 

( )1 0 1/f f sz z W θ θ= + ∆ −     (A18) 

 

where 

θ1 is the water content in the soil below zf 

zf1 is the new depth of the wetting front at t0 (m) 

This process is repeated until a value of zfn - zfn-1 < 1 mm. 

The value of the water storage at t0 is now adjusted to give:  
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The integral of the flux at time t0 and t1 =zf1/A with depth is then calculated and the difference in the 
integrals is the water drained from the soil above that depth with: 
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   (A20) 

where  

K  is the harmonic mean of Ks if the soil properties are nonuniform and is calculated in Appendix 1 

M  is the harmonic mean of M if the soil properties are nonuniform and is calculated in Appendix 1. 

The value of 1( )tθ  using: 
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A new value of t, t2, is chosen and the procedure is repeated from Eqn (A19) onward. A spreadsheet 
with the procedure has also been provided. 

 

A3.2 Youngs Model 
The Youngs model is not suitable for nonuniform water content as Q∞ needs to be calculated for a 
whole profile. Although an attempt was made to develop a method, it was not satisfactory due to it 
violating assumptions made in the development of the method. No further development will be 
presented here. 

 

 


	Table of Contents
	Table of Figures
	Table of Tables
	Executive Summary
	1. Background
	2. Water transport
	2.1. Infiltration
	2.1.1. Macro-pores, Layering and Uneven Wetting
	2.1.2. Scale and Uncertainty
	2.1.3. Specific Infiltration Models
	2.1.3.1 Green and Ampt
	2.1.3.2 Linear Soil
	2.1.3.3 Philip two-term infiltration model

	2.1.4. Time to Ponding and Time Compression Analysis
	2.1.5. Layered Soils
	2.1.6. Infiltration Model for MEDLI
	2.2. Drainage
	2.3. Root water uptake and transpiration
	2.3.1. Partitioning Potential Evapotranspiration to Evaporation and Transpiration
	2.3.1.1 Soil evaporation


	3. Solute Transport
	3.1. Piston flow
	3.2. Advective Dispersive Equation (ADE)
	3.3. Transfer Function Model
	3.4. Corwin Bypass model
	3.5. Burns Equation

	4. Discretization of Water and Solute Transport and Sequence of Calculation
	5. Data required and measurement methods or estimation
	6. Conclusions
	7. Recommendations for future actions and investigation
	8.
	8. References
	Appendix 1. Solutions for infiltration into non-uniform initial conditions and layered soils
	A1.1 Prior to ponding
	A1.2 Time to ponding
	A1.3 Green and Ampt Model

	Appendix 2. Soil Properties used in Examples.
	Appendix 3. Drainage for Non-uniform Soil Profiles.
	A3.1 Sisson Model
	A3.2 Youngs Model


